鸡兔同笼的建模教学设计5篇
教学设计需要在教学过程中保持教学动态,并分析优化教学行为和结果,以不断提高教学质量。这里给大家分享一些关于鸡兔同笼的建模教学设计,供大家参考学习。
鸡兔同笼的建模教学设计精选篇1
教学目标
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。
教学过程
一、故事引入
教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)
二、探究新知
1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?
让学生以两人为一组讨论。
汇报讨论的结果。
(1)、列表:
鸡876543
兔012345
脚161820222426
(2)、假设法:
假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。
因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。
因此,鸡就有:8-5=3(只)
(3)、用方程解:
解:设鸡有x只,那么兔就有(8-x)只。
根据鸡兔共有26只脚来列方程式
2x+(8-x)4=26
2x+84-4x=26
32-26=4x-2x
2x=6
x=3
8-3=5(只)
2、小结解题方法:
教师:以上三种解法,哪一种更方便?
小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。
3、独立解决书中的趣题。
(1)、方程解:
解:设鸡有x只,那么兔就有(35-x)只。
根据鸡兔共有94只脚来列方程式
2x+(35-x)4=94
2x+354-4x=94
140-94=4x-2x
2x=46
x=23
35-23=12(只)
答:鸡有23只,兔有12只。
(2)、算术解:
假设都是鸡。
235=70(只)
94-70=24(只)
24(4-2)=12(只)
35-12=23(只)
答:鸡有23只,兔有12只。
三、巩固与运用
1、完成教科书第115页做一做的第1题。
学生独立读题分析后,列式解答。鼓励用方程解。
2、完成教科书第115页做一做的第2题。
提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)
请同学独立列式解答。(讲评时重点解释算术解的每步的算理)
68=48(人)
假设8条都是大船可坐48人。
48-38=10(人)
假设人数比实际的人数多10人。
多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。
10(6-4)=5(条)
8-5=3(条)
这是表示有3条大船。
四、作业
练习二十六第一、二题。
鸡兔同笼的建模教学设计精选篇2
教学内容:
人教版实验教材小学数学六年级上册P112-114
学情分析:
鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
教学目标:
1、知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。
2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。
3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。
教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
教学过程:
一、以史激趣,导入新课:
同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)
二、独立探索,构建新知:
(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?
你从这道题中,找到了什么数学信息?
(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)
这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)
谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)
能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)
有了猜测的依据,还有谁想继续猜?(……)
给老师一个机会,我猜鸡是1只,那兔有几只?(19只)
怎么知道我猜得对不对?(通过计算来验证)
(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)
虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)
现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。
鸡兔同笼的建模教学设计精选篇3
一、课题与内容:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于六年级的学生来说,解决“鸡兔同笼”问题“假设法”有利于培养学生的逻辑推理能力。
二、教学目标:
知识与技能目标:
通过猜想列表法和假设尝试法使全体学生初步感知两种方法从数到形的转化过程,尝试用不同的方法解决“鸡兔同笼”问题,体会代数方法的一般性,培养学生的逻辑推理能力。
过程与方法目标:
经历“鸡兔同笼”问题的探究与解答过程,使全体学生体会分析问题、解决问题的方法。
情感态度价值观目标:
让学生感受数学与日常生活之间的密切联系,培养学生分析解决问题的方法。
三、教学过程
活动1:活动名称:初步感知猜想列表
活动意图:通过学生的大胆猜测,不断验证,使全体学生初步建立头和腿的联系。由于猜想的局限性,让学生通过列表法有序进行列举,培养学生严谨的思维能力。
活动组织过程:(10分钟)
1、出示例题:鸡兔同笼,有6个头,共16条腿,几只鸡,几只兔?
2、读题,审题,学生先猜测。
3、怎么确定同学们的猜测是否正确?
4、用列表法进行验证。
5、像这样把数字一一列举的方法叫做“列举法”。
6、那如果对大的数据来说,猜测或列表法会有什么问题?
7、这节课我们来研究新的方法。
问题:会有重复或有遗漏
活动2:活动名称:假设法尝试
活动意图:让学生在猜测列表的基础上,运用假设法使全体学生初步理解什么是假设。在列表法变化规律的基础上,以独立思考,小组合作,交流汇报的形式,用课件动画的模式进行辅助学生,让学生了解算理,培养学生的逻辑思维能力和推理能力。
活动组织过程:(20分钟)
1、出示例题:鸡兔同笼,有8个头,共26条腿,几只鸡,几只兔?
2、假设全是鸡一共有多少条腿,比实际多还是少了多少条腿,多或少了谁的腿呢?
3、把上面的.过程用算式表示出来。
4、计算出结果,怎们检验结果是否正确。
5、假设全是兔,又该如何解决呢?
6、小组交流,汇报结果,自我检查结果是否正确。
7、说一说学习方法。
问题:假设中多或少的部分学生会有疑惑
活动3:灵活运用。(10分钟)
活动意图:通过鸡兔同笼问题与实际生活相结合,让学生进一步感受到我国古代数学的魅力。与生活实际相联系,进一步巩固本节课所学习的鸡兔同笼问题在实际生活中的正确理解与运用,使学生的逻辑思维能力和推理能力得到进一步的提升。
活动组织过程:
1、出示例题:自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有几辆?
2、读题,审题,独立尝试。
3、小组交流。
4、全班交流汇报。
问题:本题的难点对数形结合思想的联系不够。
四、小结本节内容:
谈谈你的收获与不足?
五、教学反思:
小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
鸡兔同笼的建模教学设计精选篇4
【教材分析】
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
【学情分析】
“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
【教学建议】
1、教学中要注意渗透化繁为简的思想。
2、引导学生探索解决问题的策略和方法。
3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。
【教学目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
3、了解“鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。
【教学重点】
经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】
理解掌握假设法,能运用假设法解决数学问题。
【教学过程】
一、情境导入。
今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的`数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)
师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)
有的同学已经在计算了,说说看鸡有多少只?兔有多少只?
【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
二、新知探究。
(一)感受化繁为简的必要性。
刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)
那我们就换一道数小一些的。(课件出示例1)
笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
(二)自主尝试解决问题。
我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息?
找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。
在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)
这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)
这回给你们一点时间,把你猜测的数据在练习本上算一算,想一想:你算的对吗?
(三)交流体会,掌握问题解决策略。
1、经历列表法的形成过程。
(1)经过同学们的研究,现在知道鸡和兔各有几只?
都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?
(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)
预设学生思路:
从鸡8只,兔0只开始推算。
从鸡0只,兔8只开始推算。
前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。
直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。
这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。
从鸡有4只,兔有4只开始推算。
这种情况猜测的次数比较少,对于数据比较大的时候适用。
有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的思路。如果有同学有这一发现,教师要及时引导学生表述准确,为后面的假设法学习做好铺垫。
(3)小结收获。从刚才的列表情况看,你觉得怎样列表比较好?
(4)运用列表法解决情境图中的鸡兔同笼问题。
自主解决,交流方法并订正结果。
如果没有出现上面的第五种思路,教师小结可以提出。
小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,增加两只脚;多一只鸡就会少一只兔子,减少两只脚。运用这一规律正好是我们解决这一问题的另一种方法。
2、探究假设法。
(1)问题预设:刚才大家找到了“鸡兔同笼”问题的解决办法,讨论中还发现了一种更简单的方法,如果运用这种推理方法,怎么解决呢?
(2)引导学生交流:发现假设成都是鸡或者都是兔,计算起来会更简便。
交流时重点让学生说说每一步的意思。
先假设成都是鸡,着重说说推理的过程。
同样,让学生说说,如果假设成都是兔,是什么情况?
小结收获。
(3)运用假设法解决情境图中的“鸡兔同笼”问题,再汇报交流。
【设计意图】让学生在自主尝试中找到用列表法解决“鸡兔同笼”问题的方法,引导学生有序思考,组织学生有层次地汇报和交流,让学生在这一过程中体会到:根据表中总脚数与题中数据的差,来调整数据,对假设法的探究起到了铺垫作用,同时对假设法的理解也更加深刻。
三、练习强化,深化认识。
针对性练习,完成做一做第一题。
独立完成,再集体交流订正。
四、阅读资料,丰富认识。
同学们,你们知道古人是怎样解决“鸡兔同笼”问题的吗?阅读105页的资料。
古人真是很聪明啊!今人更了不起,又发现了很多关于“鸡兔同笼”问题的趣解,你们想了解吗?介绍几种。
1、假设所有的鸡和兔子都训练有素,然后你拿着一个口哨,吹一下,所有动物收起一只脚,吹两下,收起两只脚,好了,现在鸡一屁股坐在地上了,小兔都“作揖”了,也就是还有两只脚站着,总脚数减去两倍的头的个数再除以二就是兔子的只数了。
2、假如鸡的翅膀也着地,也有四只脚,那么总脚数就是总只数乘4,减去实际的脚数,就是翅膀的数,翅膀都是鸡的,再除以2,就是鸡的只数。
五、谈话式小结。
同学们,今天你有什么收获?每种方法都明白了吗?你最喜欢哪种方法?
提示学生做题时要根据题目选择合适的方法来解决问题。
鸡兔同笼的建模教学设计精选篇5
教学目标:
1、了解鸡兔同笼问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决鸡兔同笼问题,使学生体会假设和代数方法的一般性。
3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:
用假设法解决鸡兔同笼问题。
教学具准备:
课件。
教学过程:
一、创设情境,激情导入
1、出示原题
师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示《孙子算经》中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
2、理解题意
师:同学们知道这道题的意思吗?请试着说一说。
生:这道题的意思是现在,鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?
师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?
3、揭示课题
师:这就是著名的鸡兔同笼问题,也正是这节课要研究的问题。
[评析:教学即对文化的传承与弘扬,数学教学也不例外。课初,教师利用我国古代数学名著中的数学趣题直接导入新课学习,让学生感受到了数学文化的悠久与魅力,激发了探究的兴趣和动机,明确了本节课学习的目的与要求。导入新课的方式多种多样,惟有适合学生学习所需的才是最佳。]
二、合作探索,主动构建
1、出示例1
师:为便于研究,我们可先从简单问题入手,把题中的35个头和94只脚分别换成8个头和26只脚,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?
2、理解题意
师:从上面数,有8个头;从下面数,有26只脚分别是什么意思?
生:从上面数,有8个头是说鸡和兔一共有8只;从下面数,有26只脚是说鸡脚和兔脚数共是26只。
3、探索策略
(1)猜想法
师:鸡和兔各有几只呢?我们不妨猜猜看。
生1:3只兔,5只鸡。
生2:6只鸡,2只兔;7只鸡,1只兔;5只兔,3只鸡。
师:伟大的科学家牛顿曾说:有了大胆的猜想才会有伟大的发明和发现。同学们猜的对不对,不妨验证一下。
生1:一只兔4只脚,3只兔就有12只脚;一只鸡2只脚,5只鸡就有10只脚,一共就是22只脚,看来没猜对。
生2:6只鸡、2只兔一共20只脚,也没猜对;7只鸡、1只兔共18只脚,也不对;5只兔、3只鸡共26只脚,猜对了。
师:在4次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?
生:不是很容易猜出正确答案,而且当头和脚的只数越多时,越不容易猜出答案。
师:看来,我们还有研究新方法的必要。
[评析:既鼓励学生大胆猜想,又能让学生体会到猜想法的局限性,还能激发学生探索解决问题新策略的兴趣,这样的教学正是新课程所需要的高效教学。]
(3)假设法
①假设全是鸡
师:我们先从表格中右起的第一列,8和0是什么意思?
生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡,这样就有16只脚。
师:实际脚的只数是26只,这样就笼子里就多出了10只脚,该怎么办呢?
生: 用刚才我们发现的规律:在鸡兔总只数不变的情况下,每增加1只兔、减少1只鸡,脚的只数就会增加2只,应该增加5只兔,脚的只数才变成26只,即10里面有5个2。
师:上面的过程能用算式表示出来吗?请同学们试试看。
(学生试着列算式,请一个学生到黑板上去板演。)
师:孩子们都写完了吗?多聪明啊!这是一个同学写的算式,我们来听听他是怎么想的。
生:(对着自己写的算式说想法)假设笼子里全是鸡,就有28=16只脚,而笼子里实际有26只脚,这样就多出了26-16=10只脚,而1只兔比1只鸡多2只脚,这样就有102=5只兔,鸡的只数就是8-5=3只了。
师:说得多好哇!为了让大家进一步理解这种方法,下面我们边看图边分析(课件演示)。
师:算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:32+54=26(只),5+3=8(只)。
师:看来做对了,最后写上答语。
②假设全是兔
师:我们再回到表格中,看看左起第一列中的8和0是什么意思?
生:假设笼子里全是兔。
师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?请同桌边讨论边写算式。
(学生讨论写算式,然后指名板演。)
师:这是一位同学写的算式,我们来听听他是怎么想的。
生:假设笼子里全是兔,就有48=32只脚,这样笼子里实际的脚数就比假设的脚数少了32-26=6只脚,1只鸡比1只兔少2只脚,这样就有62=3只鸡,也就知道有8-3=5只兔了。
课件演示:假设法 中假设全是兔的情况。
师:在列表的基础上,我们想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。
生:假设法。
师:我们都认为猜想法和列表法有局限性,假设法还有局限性吗?
生:(讨论后)用假设法应该没有局限性了。
[评析:让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,教师以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。]
(4)代数法
师:在解决鸡兔同笼问题时,除了假设法没有局限性外,还有别的也没有局限性的一般方法吗?
生:方程的方法。
师:那么就请同学们用列方程的方法试一试。
(全班尝试,一名学生板演。)
师:我们来听听这个同学的想法。
生:设有x只兔,鸡就有(8-x)只。列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。
师:老师想问你,这里的' 4x和2(8-x)分别表示是什么?
生:4x是兔脚的总数,2(8-x)是鸡脚的总数。
师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。
[评析:代数法是学生在五年级已学的旧方法,但运用到解决鸡兔同笼问题之中又是新策略。教师以旧知识和旧方法为基础,放手让学生大胆尝试、自主探究,并抓住其中的疑难点设问,帮助学生真正理解过程、掌握方法、提升技能。]
4.小结方法
师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?
生:猜想法,列表法,假设法和代数法。
师:要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?
生1:我选择假设法,假设法比较简便。
生2:我选择代数法,代数法也好理解。
师:下面同学们就用自己喜欢的方法解决这个问题。
[评析:在计算教学中,需要算法多样化,更需要算法的优化;同样,在解决问题教学中,需要策略多样化,更需要策略的优化。发散思维与收敛思维应该兼顾并进。但优化并不等于强加,优化也强调自主和需要过程。在这里,教师对此都恰倒好处地予以了关照。]
三、分层练习,深化认识
1、解决原题
生:先独立完成《孙子算经》中的原题,后相互评议。
师:刚才我们用自己的方法解决了这个问题,那么《孙子算经》中又是怎样解决这个问题的呢?同学们想知道吗?我们一起去看看?(课件演示抬腿法 )同学们古人的解法巧妙吗?如果大家对这种解法感兴趣,课后可以再研究。请同学们想一想,在日常生活中还有哪些情况类似于鸡兔同笼问题?
2、举出实例
生1:买了一些苹果和梨子,告诉苹果和梨子的单价和总数量,还有总的价钱,求苹果和梨分别买了多少千克。
生2:自行车和汽车一共有几辆,一共有多少个轮子,求汽车和自行车分别有几辆。
师:可见生活中类似于鸡兔同笼的问题有很多,这些问题都可用不同的数学方法来解决,课后可用我们喜欢的方法解决这些问题。
3、课堂作业
从第115页做一做中自选1~2道题完成。
[评析:《孙子算经》中原题的解决,让学生排除了课初的悬念;作为特殊而巧妙的古代抬腿法的课件简介,让学生进一步感受到了我国古代数学的魅力;放手让学生对生活中类似于鸡兔同笼问题的列举,让学生体会到了此类问题在现实中的广泛存在,进而凸显了本节课的学习价值;书面作业的当堂完成和自由选择,足以体现了教学的高效和学生解决问题技能的及时训练与提升,以及对学生学习自主性的尊重。]
[总评:鸡兔同笼问题过去是少数精英学生学习的竞赛内容,如今是全体学生学习的一般内容。如何能较好地达成教学目标,让全体学生学得了、学得好、学得乐,广大教师都在密切关注。从本节课的教学效果来看,学生的表现还的确如此。究其原因,主要是教师特别注重了以下主要方面。
1、注重解题策略的多样
教学中,教师组织学生多手段、多层面、多角度地探索问题,学生先后运用猜测法、列表法、假设法、代数法等分析和解决问题,从而获得了分析问题和解决问题的基本方法和一般方法,体验了解决问题策略的多样性,发展了创新意识。在注重解决问题策略多样化的同时,教师还注重了解决问题策略的自主优化,注重了不同策略间的相互联系和影响,注重了解决问题策略的局限性和一般性。
2、注重思维能力的培养
让学生在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到假设法、代数法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。
3、注重数学思想的渗透
数学广角是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材数学广角中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的替换法解决问题,渗透了转化的思想和方法;用列表法解决问题,渗透了函数的思想和方法;用算术法解决问题,渗透了假设的思想和方法;用方程法解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
4、注重数学文化的传承
鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把《孙子算经》、《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用抬腿法这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。]
鸡兔同笼的建模教学设计
上一篇:2023奥数鸡兔同笼教学设计
下一篇:返回列表