欢迎访问安卓范文网!

六年级鸡兔同笼即教学设计

七七范文 分享 时间: 加入收藏 我要投稿 点赞

六年级鸡兔同笼即教学设计5篇

教学设计需要考虑到学生的意愿和需求,以便根据实际需要进行灵活调整,以最大程度地满足学生的需求和学习期望。这里给大家分享一些关于六年级鸡兔同笼即教学设计,供大家参考学习。

六年级鸡兔同笼即教学设计

六年级鸡兔同笼即教学设计精选篇1

教学内容:

教科书数学六年级上册P112-115。

教学目标:

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理

教具准备:

多媒体课件

教学过程:

一、解读原题,直奔主题。

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

二、合作探究,寻找策略。

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2) 理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④ 展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

⑤ 反馈交流

A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥ 小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

3、假设法

①. 学生独立尝试列式解答

②. 小组讨论,说一说用假设法解答的算理

③. 汇报反馈

④. 课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

A. 假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

B. 假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤. 让学生对照课件说一说算式表示的意义

⑥. 思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

4、方程解

解:设兔有 只,则鸡有 只。

也可以设:鸡为 只,则兔有 只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

5、梳理小结,比较优化。

三、推广应用,建立模型。

1. 选择自己喜欢的方法解决《孙子算经》中的原题。

2. 解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3. 对比联系,建立模型。

4. 小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5.让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

四、引导阅读,课外延伸。

1. 阅读并思考课本114页的“阅读材料”。

2. 完成练习二十六的1—3题。

六年级鸡兔同笼即教学设计精选篇2

一、教学目标

【知识与技能】

理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

【过程与方法】

经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

【情感态度价值观】

感受古代数学问题的趣味性。

二、教学重难点

【教学重点】

掌握运用列表法、假设法解决“鸡兔同笼”问题。

【教学难点】

理解掌握假设法,能运用假设法解决数学问题。

三、教学过程

(一)引入新课

PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

引出课题——《鸡兔同笼》

(二)探索新知

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习

PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

(四)小结作业

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

六年级鸡兔同笼即教学设计精选篇3

【教材分析】

“鸡兔同笼”是人教版四年级下册数学广角的教学内容,实验版教材把这一内容安排在六年级上册,修订版教材把这一内容安排在四年级下册。新教材关于“鸡兔同笼”最大的变化就是删除了列方程解答的内容。人民教育出版社小学数学室的刘福林老师在人教版四年级下册修订说明中,对这一变化的原因做了特别说明:该内容对于六年级学生来说挑战性不足,并且学生在五年级学过列方程解决问题,这也对学习列表法、假设法等造成了一定的干扰。即,为了更加强调用列表法和假设法解答,新教材才删除列方程解答的内容并且将整块内容调整到学生没有学习方程之前的四年级下册。从这个变化可以看出,人教版教材一如既往地强调用假设法解“鸡兔同笼”问题,且更加重视。其原因来自于假设法本身。假设法是一种算术方法,是一个“假设—比较—推理—解答”的过程,有助于培养学生的逻辑思维能力。

【学情分析】

1、“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。

2、“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。

【教学目标】

1.理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

2.经历自主探究解决问题的过程,渗透数学思想,培养逻辑推理能力。

3.了解我国古代数学文化,增强民族自豪感。

【教学重点】

经历探索问题解决的过程,掌握“鸡兔同笼”问题的解法。

【教学难点】

理解用假设法的算理并能运用假设法解决实际问题。

【教学预设】

一、历史激趣,导入新课

1、介绍符号:数学上经常借助画图的方法帮助我们分析解决问题,这种解题策略叫数形结合。针对今天课的内容,我想在课堂上使用这两个图形符号,你能猜出它们代表什么吗?

2、鸡换兔,兔换鸡,符号怎么变?

3、出示情境图,介绍《孙子算经》中的“鸡兔同笼”问题,板书课题。

(1)能看懂吗?是什么意思?

(2)从题中你了解了哪些数学信息?关于鸡和兔,你还知道什么数学信息?

4、化繁为简:这个问题你能解决吗?数字较大也增加了困难,在解决数字较大的数学难题时,我们可以先从较小数中寻找规律的策略,这种方法叫化繁为简。

二、探究交流,尝试解决问题。

1、修改数字,呈现例1。

2、接下来,我们来探索这道鸡兔同笼问题的解法。老师相信,以同学们的智慧,通过独立思考、小组交流等方式就能自己解决。

3、在开始探究以前,大家有没有探究的方向,老师给同学们提供一些小提示。

(1)先猜测鸡和兔的只数,再计算脚数进行验证是个不错的方法。为了使猜测有序,数据不重复不遗漏,我们可以借助表格来记录。

(2)画图也是不错的.想法,我们可以先假设全是鸡或全是兔,再数一数目前几只脚。脚多了,把脚多的兔换成脚少的鸡;脚少了,把脚少的鸡换成脚多的兔。

4、学生用探究题完成合作探究。

5、反馈,学生展示成果。预设:

(1)列表法

鸡的头数

兔的头数

脚的只数

a、有序地进行猜测-验证,把结果填入表中。

b、从表格中可以看出鸡应该是__只,兔应该是__只,因为__。

c、从表格中你还发现什么规律?__

根据规律,能不能从一次猜测直接调整到正确结果?

(2)画图法

想:假设8只全是__,就有__只脚;实际上有26只脚,与设想相差__只脚,一只鸡与一只兔相差2只脚,所以要把__只__换成__只__,脚数刚好为26只。因此,兔有__只,鸡有__只。

a、说说你是怎样想的?

b、看懂了他的方法吗?有什么问题想问他?为什么要添(划去)腿呢?为什么要两条两条添(划去)呢?为什么要添(划去)五(三)次呢?

6、能不能用算式把画图法的过程写出来?(一生复述,教师板书。)

7、分析算式:10是什么意思?(4-2)求的是什么?

8、不用看画图,能不能把第二种假设法直接列出算式?(假设8只是兔,你会想到什么算式?与26只脚相比,你又会想到什么算式?多出了6只脚,又会让你想到什么算式?答案3是什么?)

9、比较两种假设方法,你有什么发现?(总结:假设全鸡少兔脚,除以脚差便得兔;假设全兔多鸡脚,除以脚差便得鸡。板书:假设)

10、选择方法解答原《孙子算经》中的鸡兔同笼问题

(1)我们探索出了几种方法来解决“鸡兔同笼”数学问题?

(2)现在我们来解决《孙子算经》中的鸡兔同笼问题,你会选择哪种方法?为什么?

(3)独立解答,一生板演。

(4)全班交流。

三、练习巩固,反思提升。

1、鸡和兔关在同一个笼子的现象在生活中并不常见,但生活中还有很多与“鸡兔同笼”有相同数量关系的例子,观察下面的图片,你发现了什么?

(1)乐乐餐厅有2人桌和4人桌两种餐桌。

(2)有幸运草之名的四叶三叶草有些长3片叶,有些长4片叶。

(3)蓝球比赛中有记3分的球和计2分的球。

2、“龟鹤算”:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(1)这道题是“鸡兔同笼”这一类的问题吗?

(2)解决这个问题,你喜欢用哪种方法呢?

四、梳理小结

1、今天研究了什么问题?你掌握了哪些解决“鸡兔同笼”问题的方法?

2、我们怎样找到解决这个问题的方法呢?

六年级鸡兔同笼即教学设计精选篇4

一、教学目标

(一)知识与技能

了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

(二)过程与方法

经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。

(三)情感态度和价值观

在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。

二、教学重难点

教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。

教学难点:理解用假设法解决“鸡兔同笼”问题的算理。

三、教学准备

课件、实物投影。

四、教学过程

(一)情境导入

教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。

(板书课题:鸡兔同笼)

出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?

学生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?

教师:从题中获取信息,你知道了什么,要求什么问题?

(二)探究新知

1、尝试解决,交流想法。

既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。

问题:同学们想一想,算一算鸡和兔各有多少只?

2、感受化繁为简的必要性。

大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?

数据大了不好猜,我们应该怎么办?

我们把数字改小些,先从简单的问题入手。

(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”

教师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?

预设:

学生1:鸡和兔共8只,鸡和兔共有26只脚。

学生2:鸡有2只脚,兔有4只脚。

【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。

3、猜想验证。

教师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件?

学生:鸡和兔一共有8只。

教师:是不是抓住这个条件就一定能马上猜准确呢?好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。

学生汇报。

小结:这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。(板书:列表法)

教师:老师刚才发现,很多同学都完成得非常快,很了不起!那么,同学们,你们觉得用列表法解决“鸡兔同笼”问题怎么样呢?

预设:

学生1:列表法能很清晰地解决这个问题。

学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

学生小组交流汇报。

预设:

学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的`数量也跟着增加2只。

学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

4、数形结合理解假设法。

教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

(1)假设全是鸡。

教师:我们先看表格中左起的第一列,8和0是什么意思?

学生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡。

教师:那笼子里是不是全是鸡呢?这也就是把什么当什么来算了?

学生:不是,我们是把一只4只脚的兔当成一只2只脚的鸡来算的。

教师:这样算会有什么结果呢?

学生:每少算一只兔就会少算2只脚。

教师:假设全是鸡,一共是16只脚。实际有26只脚,这样笼子里就少了10只脚,这说明什么呢?

学生:每只鸡比兔少2只脚,少了10只脚说明笼子里有5只兔。

教师:你们能列出算式吗?

学生尝试列算式。

教师以画图法进行演示:

8×2=16(只)。(如果把兔全当成鸡,一共就有8×2=16只脚。)

26-16=10(只)。(把兔看成鸡来算,4只脚的兔当成2只脚的鸡算,每只兔就少算了2只脚,10只脚是少算的兔的脚数。)

4-2=2(只)。(假设全是鸡,就是把4只脚的兔当成2只脚的鸡。所以4-2表示一只兔当成一只鸡,就要少算2只脚。)

10÷2=5(只)兔。(那把多少只兔当成鸡算,就会少10只脚呢?就看10里面有几个2,也就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡。(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡。)

(2)假设全是兔。

教师:我们再回到表格中,看看右起第一列中的0和8是什么意思?

学生:就是有0只鸡和8只兔,也就是假设笼子里全是兔。

教师:笼子里是不是全是兔呢?这个时候是把什么当什么算的?

学生:把里面的鸡当成兔来计算的。

教师:那把一只2只脚的鸡当成一只4只脚的兔来算,会有什么结果呢?

学生:就会多算2只脚。

教师:请同学们像老师那样画一画,算一算。

学生汇报:

8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

(3)提出假设法概念。

刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

(板书:假设法)

【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

(三)知识运用

学生独立完成古代趣题。

【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

(四)全课小结

这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

六年级鸡兔同笼即教学设计精选篇5

教学内容:

人教版课程标准实验教科书四年级下册第103-105页内容。

教学目标:

1、 了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、 尝试用不同的方法解决“鸡兔同笼”问题,

3、 在解决问题的过程中培养学生逻辑推理能力。

教学重点:

尝试用假设法解决“鸡兔同笼”这类问题。

教学过程:

一、课前游戏,导入课题。

二、创设情境,提出问题。

1、出示原题:

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!

(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2、理解题意:

师:同学们,你们知道这道题的意思吗?谁愿意试着说一说! 生:这道题的意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?

师:大家同意吗?

(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)

3、揭示课题:

师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。

三、自主探索,解决问题

1、(出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2、分析并理解题意:

(1)从上面数,有8个头就是说鸡和兔的头一共有8个。 (也就是说鸡和兔一共有8只。)

(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。

(3)问题是什么?(鸡和兔各有多少只?)

3、猜一猜:随学生猜想板书并验证。

4、 介绍列表法:

师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)

小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。

5、 介绍假设法:

当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。

(1、)假设全是鸡:在鸡兔总只数不变的'情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。

(2、)假设全是兔:先我们用假设全是鸡的办法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?

小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)

6、介绍孙子算经(抬脚法)

四、课堂练习

课本做一做“龟鹤问题”

五、课堂小结

这节课你学到了什么?

板书设计

鸡兔同笼猜想法 列表法 假设法 抬脚法

221381
领取福利

微信扫码领取福利

微信扫码分享