欢迎访问安卓范文网!

2023高考数学实用的解题技巧

范文百科 分享 时间: 加入收藏 我要投稿 点赞

2023高考数学实用的解题技巧大全

就快要参加高考了,同学们在做高考数学题的时候,可以运用一些答题策略和技巧,来提高题目正确率。下面是小编为大家整理的关于2023高考数学实用的解题技巧,欢迎大家来阅读。

2023高考数学实用的解题技巧

高考的数学解题技巧

规范答题

从往年高考生的常见失误来看,规范答题很重要,很多学科按步骤给分,哪怕一道题没有做完,也要把懂做的一部分按步骤写上去。最近要看看近3年高考卷的详解评分标准,学会从试卷中找到采分点,知道如何才能把分数抓准抓牢。

一定要明确高考数学时间如何分配以保障学生获得良好的学习状态和提高综合学习能力为目标,立足于习惯培养、方法教授、知识查漏补缺和拓展延伸;帮助广大中小学生真正解决学习问题,使成绩得到大幅度提高,高考数学时间如何分配处理好从而实现自己的理想和家长的愿望。

节约时间的关键是一次做对

有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生看不上前边小题的分数,觉得后边大题的分数才“值钱”,这是严重的误区。

希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。

高考数学答题技巧

1.养成良好的考试习惯。

拿到试卷,首先填写好姓名和考号,快速浏览试卷,把握全卷的难易,高中英语,把容易的题的题号写在草稿纸的最顶端,再做题,遇到卡壳,马上跳过去做容易的题。这样保证最大限度发挥你的实力,也解决了由于过度紧张导致的暂时遗忘影响考试发挥的问题。注意机读卡的填涂问题,做完一道大题就填一部分,把第一卷做完后及时填涂,以避免全部做完再填时没时间。

2.把握好审题关。

很多学生练习了很多题,题与题之间有些相似,但又有区别,做题一不小心就会习惯性主观附加已知条件,导致最终出错。要求“字字看清,句句读懂,理解题意”,审两遍题,明确已知条件和隐含的已知条件。

3.深刻理解“长题不难,难题不后”。

一般高考试卷中总会出现题干很长,语句环绕的试题。乍一看很难理解,摸不清意图。但往往多读几遍,把其中关系弄清,做起来就比较简单。这种题主要是考你的审题能力与心理素质。做长题的关键是审题。“难题不后”,主要是说最后一题一般不是最难的,所以要学会总体把握全卷,先做简单的后做难的.。

4.思维暂时中断不要怕。

考试时出现记忆或思维的暂时中断时可以跳开去做另一道容易做的题;或翻看试卷,由此及彼,触类旁通;又或者埋头由大到小缩小包围圈搜索记忆。

5.永远不要怀疑自己的能力。

有一些同学平时考试成绩较好,但面临重大考试往往会发挥失常,主要是考试时不相信自己,老是回头检查,老是重复计算,结果导致时间不够和心理紧张。应该先把容易的题做完再回过头来检查,而且马上做了马上检查也不利于发现问题。

“优秀是一种习惯”,好的习惯终生受益,坏习惯终生吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。

高考数学答题技巧归纳

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

9、注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。

221381
领取福利

微信扫码领取福利

微信扫码分享