函数的定义通常分为传统定义和近代定义,两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。下面是小编整理的数学必修一函数的应用知识点,仅供参考希望能够帮助到大家。
数学必修一函数的应用知识点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
数学一元二次方程解应用题的几种常见类型
(1)数字问题
三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1。
三个连续偶数(奇数):若中间的一个数为x,则另两个数分别为x-2,x+2。
三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c,则这个三位数是100a+10b+c.
(2)增长率问题
设初始量为a,终止量为b,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)2=b。
(3)利润问题
利润问题常用的相等关系式有:
①总利润=总销售价-总成本;
②总利润=单位利润×总销售量;
③利润=成本×利润率
(4)图形的面积问题
根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
数学旋转变换知识点
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
数学必修一函数的应用知识点相关文章:
★ 高中数学三角函数知识点
★ 高一数学公式知识点归纳
★ 高一年级数学必修五知识点最新归纳2021
★ 高三数学重要知识点总结五篇
★ 高一数学必修五知识点总结归纳
★ 人教版高一数学必修一知识点精选归纳5篇
★ 人教版高一数学必修一知识点归纳最新五篇
★ 高一数学必修一知识点必背难点总结5篇
★ 高一数学必修一知识点梳理五篇分享
★ 人教版高一数学必修一必考知识点总结分享五篇
数学必修一函数的应用知识点
上一篇:数学必修一必背知识点总结
下一篇:返回列表