教师要培养学生正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。下面是小编为大家整理的有关初三数学知识点分类复习资料,希望对你们有帮助!
初三数学知识点分类复习资料1
代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)
几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。
1、实数的分类
有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:-3,,0.231,0.737373...
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0)。
实数:有理数和无理数统称为实数。
2、无理数
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001...等;
(4)某些三角函数,如sin60o等。
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
即:(1)实数的相反数是。
初三数学知识点分类复习资料2
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交 d
相切 d=r
相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和圆的位置关系
外离 d>R+r
外切 d=R+r
相交 R-r
内切 d=R-r
内含 d
8 正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9 弧长和扇形面积
弧长
扇形面积:
10 圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3 用频率去估计概率
初三数学知识点分类复习资料3
几何综合测验
【复习要点】
代数几何综合题是初中数学中覆盖面最广、综合性的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.
【实弹射击】
1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图a,AC= ,BD= ;四边形ABCD是 梯形.
(2)请写出图a中所有的相似三角形(不含全等三角形).
图10
(3)如图b,若以AB所在直线为 轴,过点A垂直于AB的直线为 轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向 轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.
图a
2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM ∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;
(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,
求此时x的值.
3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?当x在何范围时,△PQW不为直角三角形?
第3题图(2)
(3)问当x为何值时,线段MN最短?求此时MN的值。
第3题图(1)
4、(08茂名市)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.
(1)求证:∠ADB=∠E;(3分)
(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3分)
(3)当AB=5,BC=6时,求⊙O的半径.(4分)
相关链接 :
若 是一元二次方程 的两根,则
5、(08茂名市)如图,在平面直角坐标系中,抛物线 =- + + 经过A(0,-4)、B( ,0)、 C( ,0)三点,且 - =5.
3、 求 、 的值;
4、 (2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.
6、(08梅州市)如图所示,E是正方形ABCD的边AB上的动点, EF⊥DE交BC于点F.
(1)求证: ADE∽ BEF;
(2) 设正方形的边长为4, AE= ,BF= .当 取什么值时, 有值?并求出这个值.
7、(08梅州市)如图所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为 轴,过D且垂直于AB的直线为 轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使 PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
8、(2008湛江市) 如图所示,已知抛物线 与 轴交于A、B两点,与 轴交于点C.
(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在 轴上方的抛物线上是否存在一点M,过M作MG 轴
于点G,使以A、M、G三点为顶点的三角形与 PCA相似.
若存在,请求出M点的坐标;否则,请说明理由.
初三数学知识点分类复习资料相关文章:
★ 初三上学期数学知识点归纳大全最新
★ 2021初三中考数学复习资料整理
★ 最全初三数学知识点归纳总结
★ 中考数学知识点资料复习大全2021
★ 初三数学知识点提纲整理2021
★ 初三中考数学必备复习资料2021
★ 初三数学复习资料大全2021
★ 初三数学基础知识考点总结归纳
★ 中考数学复习资料汇总
★ 初三数学上册知识点期末归纳总结
初三数学知识点分类复习资料
上一篇:初三数学圆的知识点归纳
下一篇:返回列表