欢迎访问安卓范文网!

中考数学压轴题类型及策略

范文百科 分享 时间: 加入收藏 我要投稿 点赞

对于中考数学,压轴题往往是是考生最怕的。很多考生都以为它一定很难,不敢碰它。其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。下面给大家带来一些关于中考数学压轴题类型,希望对大家有所帮助。

中考数学压轴题类型及策略

其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。

第(1)题容易上手,得分率在0.8以上;

第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,

第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。

而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。

1、线段、角的计算与证明

解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

2、一元二次方程与函数

在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

3、多种函数交叉综合问题

初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。

4、列方程(组)解应用题

在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

5、动态几何与函数问题

说来,几何综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。

6、几何图形的归纳、猜想问题

中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。

中考数学压轴五种策略

1.学会运用数形结合思想

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2.学会运用函数与方程思想

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3.学会运用分类讨论的思想

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:

(1)分类中的每一部分是相互独立的;

(2)一次分类按一个标准;

(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏。

4.学会运用等价转换思想

转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5.要学会抢得分点

一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。

解中考数学压轴题,一要树立必胜的信心;二要具备扎实的基础知识和熟练的基本技能;三要掌握常用的解题策略。


中考数学答题考试技巧

一、选择题的解法

1、直接法:根据题设条件,通过计算、推理或判断,得到题目所求。

2、特殊值法:有些选择题所涉及的数学命题与字母取值范围有关;在解这类题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉。

二、常用的数学思想方法

1、数形结合思想:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

2、联系转化思想:事物之间是相互联系、相互制约、相互转化的,数学学科也是。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论思想:在数学中,我们常常需要根据研究对象性质的差异,分不同情况予以考查;这种分类思考的方法同时也是重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就可以使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。是初中代数中重要的变形技巧,在分解因式、解方程、讨论二次函数等问题中,都起到了重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,归结为比原来更为基本的问题。

7、归纳演绎法:由一般到特殊的推理方法。

8、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似。类比法既可能是特殊到特殊,也可能是一般到一般。

三、证明角的相等

1、对顶角相等。

2、同角(或等角)的余角(或补角)相等。

3、两直线平行,同位角相等、内错角相等。

4、凡直角都相等。

5、角平分线分得的两个角相等。

6、同一个三角形中,等边对等角。

7、等腰三角形中,底边上的高(或中线)平分顶角。

8、平行四边形的对角相等。

9、菱形的每一条对角线平分一组对角。

10、等腰梯形同一底上的两个角相等。

11、同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

12、圆内接四边形的任何一个外角都等于它的内对角。

13、同弧或等弧所对的圆周角相等。

14、弦切角等于它所夹的弧所对的圆周角。

15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

16、全等三角形的对应角相等。

17、相似三角形的对应角相等。

18、利用等量代换。

19、利用三角函数。

20、切线长定理:从圆外一点引圆的两条切线,它们的切线段长度相等,并且这一点和圆心的连线平分两条切线的夹角。

四、证明直线的平行或垂直

1、证明两条直线平行的主要依据和方法:

(1)定义:在同一平面内不相交的两条直线平行。

(2)平行定理:两条直线都和第三条直线平行,则这两条直线也互相平行。

(3)平行线的判定:同位角相等(内错角相等或同旁内角互补),两直线平行。

(4)平行四边形的对边平行。

(5)梯形的两底平行。

(6)三角形(或梯形)的中位线平行与第三边(或两底)

(7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

2、证明两条直线垂直的主要依据和方法:

(1)两条直线相交所成的四个角中,有一个是直角时,这两条直线互相垂直。

(2)直角三角形的两直角边互相垂直。

(3)三角形的两个锐角互余,则第三个内角为直角。

(4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

(5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

(6)三角形(或多边形)一边上的高垂直于这边。

(7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

(8)矩形的两邻边互相垂直。

(9)菱形的对角线互相垂直。

(10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。(11)半圆或直径所对的圆周角是直角。

(12)圆的切线垂直于过切点的半径。

(13)相交两圆的连心线垂直于两圆的公共弦。

中考数学选择题解题方法

01

排除法(筛选法)

从已知条件出发,结合选项,通过观察、分析、猜想、计算等方法一一排除明显出错的答案,缩小思考范围,提高解题的速度。

比如二次函数和一次函数图像的选择题,逐一排除错误选项,从而确定正确的一项。

02

验证法

把各个选择项代入原题加以验证,看是否符合题意,然后得出结论。比如图像是否经过这点,就可以用验证的方法带入题中,得出正确的选项。

03

特殊值法

根据题设条件,选取恰当的特殊数值,替代题中的字母和数式,通过计算,得出答案,再类推一般性答案,从而得出正确答案。

比如规律题,推理结果时,可以用一些数值来进行验证。

填空题

填空题是初中数学测试中常见的一种基本题型,突出考查同学们准确、严谨、全面、灵活的运用知识进行正确运算的能力。

填空题只要求写答案,缺少选项提供的目标信息,结果正确与否难以判断,一步失误,全题零分,要想又快又准的做好填空题,要在「准、巧、快」三字上下功夫。

04

直接法

直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。通过推理和运算等过程,直接得到结果。

05

数形结合法

数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。

通过对图像的观察、分析和研究、启发解题思路,找出问题的隐含条件,从而简化解题过程,检验解题结果。

解答题

解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。

解答题涉及的知识点多、覆盖面广,综合性强、跨度大、解法灵活,涉及数式计算、函数图像及性质的计算应用等。

解题的关键是从题目的语言叙述中获取「符号信息」,从题目的图像、图形中获取「形象信息」,灵活应用定义、公式、性质、定理进行计算和推理。运用各种数学思想,构建各种数学模型解决问题。

06

构造图形

复杂的几何图形问题,一般需要添加恰当的辅助线才能顺利解决,如连接、延长、做平行、做垂直等,将不规则、不常见的图形转化为规则或特殊的图像求解。

如:构造等长线段、三线八角、全等三角形、相似三角形、直角三角形等,从而利用特殊图形的性质和判定解决问题。



中考数学压轴题类型及策略相关文章

★ 做数学压轴题的技巧初中

★ 初三中考数学的解题技巧总结

★ 中考数学解题思路方法

★ 中考数学考试技巧归纳

★ 2016初三数学压轴题

★ 中考数学分类讨论题做题原则以及注意要点

★ 中考数学的应试技巧

★ 2020中考数学备考第一轮复习策略

★ 初中数学学习方法的两大复习策略

★ 初中数学选择填空答题技巧大全

221381
领取福利

微信扫码领取福利

微信扫码分享