将一个三角形的三个角分别往内折,三个角刚好组成一平角,平角为180度,所以三角形内角和为180度。下面小编给大家带来证明三角形内角方法,希望能帮助到大家!
证明三角形内角判定方法
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:过点C作CD∥BA,则∠1=∠A
∵CD∥BA
∴∠1+∠ACB+∠B=180°
∴∠A+∠ACB+∠B=180°
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:作BC的延长线CD,过点C作CE∥BA,
则∠1=∠A,∠2=∠B
又∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:过点C作DE∥AB,则∠1=∠B,∠2=∠A
又∵∠1+∠ACB+∠2=180°
∴∠A+∠ACB+∠B=180°
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:作BC的延长线CD,在△ABC的外部以CA为一边,
CE为另一边画∠1=∠A,于是CE∥BA,
∴∠B=∠2
又∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
证明三角形内角判定定理
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:(1)选点O在△ABC内,则如图所示,
过点O分别作DE//AB,FG//BC,PQ//AC,即得:
∠POE=∠GPO=∠A,
∠POG=∠EFO=∠C,
∠EOF=∠PGO=∠B,
∵∠POE+∠POG +∠EOF=1800,
∴∠A +∠C +∠B=1800.
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:若选点O在△ABC上且不为顶点,则如图所示,
过点O分作OQ//AC, OF//BC , 即得:
∠A=∠BOQ,∠C =∠OQB=∠QOF,∠B=∠AOF ,
∵∠BOQ+∠QOF+∠AOF=1800,
∴∠A +∠C +∠B=1800.
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=1800.
证明:若选点O在△ABC外,不在△ABC边的延长线上,则如图所示,
过点O作PQ//AC, 交BA、BC的延长线分别于P、Q,
再过点O作 EO//BC, DO//AB ,即得:
∠EOP=∠Q=∠C, ∠EOD=∠ODC=∠B,
∠DOQ=∠APO=∠BAC,
∵∠DOQ+∠EOD+∠EOP =1800,
∴∠ACB+∠B+∠BAC=1800.
从上面这八种三角形内角和定理证明方法当中,我们发现要想证明三角形的三个内角之和等于180°,就需要把问题转化到平角的大小为180°。因此,在解决问题的过程中,我们就想方设法将三角形的三个内角“转化成”一个平角,如利用添加辅助线的方法构造出一个平角,再运用一定技巧"移动"内角,将其构造成一个平角,这就是数学当中化归转化思想方法的运用。
证明三角形内角判定定义
三角形内角和公式
任意n边形内角和公式
任意n边形的内角和公式为θ=180°·(n-2)。其中,θ是n边形内角和,n是该多边形的边数。从多边形的一个顶点连其他的顶点可以将此多边形分成 个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)·180°,?n=3,4,5,…。
三角形的五心
(1)重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2;
(2)垂心:三角形的三条高线的交点叫做三角形的垂心。
(3)内心:三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心,到三边距离相等。
(4)外心:是指三角形三条边的垂直平分线也称中垂线的相交点。是三角形的外接圆的圆心的简称,到三顶点距离相等。
(5)旁心:一条内角平分线与其它二外角平分线的交点(共有三个),是三角形的旁切圆的圆心的简称。
证明三角形内角判定方法相关文章:
★ 八年级数学三角形内角和定理的证明教学反思
★ 八年级下册的数学知识点
★ 高中数学解三角形解题方法
★ 初中等角三角形综合知识归纳
★ 北师大版初二数学下册知识点归纳
★ 初一下册数学《三角形》知识点复习总结
★ 八年级数学下册复习提纲
★ 人教版八年级下册数学复习提纲
★ 八年级上册数学沪科版复习提纲
★ 中考数学知识点顺口溜及三角形复习
证明三角形内角判定方法
上一篇:中考数学压轴题类型及策略
下一篇:返回列表