欢迎访问安卓范文网!

高中数学说课稿模板一等奖

七七范文 分享 时间: 加入收藏 我要投稿 点赞

高中数学说课稿模板一等奖(通用5篇)

说课稿的撰写和演讲能力对于教师的专业发展和提高教学水平非常重要。说课稿是教师与听课人员进行沟通和交流的桥梁。这里给大家分享一些关于高中数学说课稿模板一等奖,供大家参考学习。

高中数学说课稿模板一等奖

高中数学说课稿模板一等奖精选篇1

各位老师:

大家好!我叫__,来自__。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1、教材所处的地位和作用

本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。

2、教学的重点和难点

重点:概率的加法公式及其应用;事件的关系与运算。

难点:互斥事件与对立事件的区别与联系

二、教学目标分析

1.知识与技能目标

⑴了解随机事件间的基本关系与运算;

⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。

2、过程与方法:

⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;

⑵通过学生自主探究,合作探究培养学生的动手探索的能力。

3、情感态度与价值观:

通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

三、教法分析

采用实验观察、质疑启发、类比联想、探究归纳的教学方法。

四、教学过程分析

1、创设情境,引入新课

在掷骰子的试验中,我们可以定义许多事件,如:

c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜

c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜

c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜

D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜

D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜

f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜

H=﹛出现的点数为奇数﹜

⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。

⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。

「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算

2、探究新知

㈠事件的关系与运算

⑴经过上面的思考,我们得出:

试验的可能结果的全体←→全集

↓↓

每一个事件←→子集

这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

集合的并→两事件的并事件(和事件)

集合的交→两事件的交事件(积事件)

在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。

(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)

「设计意图」为更好地理解互斥事件和对立事件打下基础,

⑵思考:

①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?

②在掷骰子实验中事件G和事件H是否一定有一个会发生?

「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。

⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。

⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。

㈡概率的基本性质:

⑴回顾:频率=频数/试验的次数

我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、

(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)

3、典型例题探究

例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

事件A:命中环数大于7环;事件B:命中环数为10环;

事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、

分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚

例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:

(1)取到红色牌(事件c)的概率是多少?

(2)取到黑色牌(事件D)的概率是多少?

分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).

「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。

4、课堂小结

⑴理解事件的关系和运算

⑵掌握概率的基本性质

「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

5、布置作业

习题3、1A1、3、4

「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

五、板书设计

概率的基本性质

一、事件间的关系和运算

二、概率的基本性质

三、例1的板书区

例2的板书区

四、规律性质总结

高中数学说课稿模板一等奖精选篇2

各位评委老师,大家好!

我是本科数学__号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

一、教材分析

1、教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

2、教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:

(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

三、教法学法分析

1、教法分析

“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1、3A组1、2、3 ,二组 习题1、3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

以上就是我对本节课的设计,谢谢!

高中数学说课稿模板一等奖精选篇3

教学目标

1.使学生了解反函数的概念;

2.使学生会求一些简单函数的反函数;

3.培养学生用辩证的观点观察、分析解决问题的能力。

教学重点

1.反函数的概念;

2.反函数的求法。

教学难点

反函数的概念。

教学方法

师生共同讨论

教具装备

幻灯片2张

第一张:反函数的定义、记法、习惯记法。(记作A);

第二张:本课时作业中的预习内容及提纲。

教学过程

(I)讲授新课

(检查预习情况)

师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。

同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?

生:(略)

(学生回答之后,打出幻灯片A)。

师:反函数的定义着重强调两点:

(1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);

(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的'。

师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?

生:一一映射确定的函数才有反函数。

(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)

在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?

生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。

从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:

(1)由y=f(x)解出x=f–1(y),即把x用y表示出;

(2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。

(3)指出反函数的定义域。

下面请同学自看例1

(II)课堂练习课本P68练习1、2、3、4。

(III)课时小结

本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

(IV)课后作业

一、课本P69习题2.41、2。

二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

板书设计

课题:求反函数的方法步骤:

定义:(幻灯片)

注意:小结

一一映射确定的

函数才有反函数

函数与它的反函

数定义域、值域的关系。

高中数学说课稿模板一等奖精选篇4

尊敬的各位专家、评委:

大家好!

我是卢龙县木井中学数学教师__,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

[设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

[设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

[设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

[设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

[设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

[设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1.1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

[设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

高中数学说课稿模板一等奖精选篇5

尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.

一、教材分析

1、 教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、 教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、 例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

221381
领取福利

微信扫码领取福利

微信扫码分享