欢迎访问安卓范文网!

北师大版八年级数学上册的教案

七七范文 分享 时间: 加入收藏 我要投稿 点赞

关于北师大版八年级数学上册的教案5篇

在数学中,我们发现真理的主要工具是归纳和模拟。数学是各式各样的证明技巧。这里给大家分享一些关于北师大版八年级数学上册实数的教案,供大家参考学习。

北师大版八年级数学上册的教案

北师大版八年级数学上册实数的教案(篇1)

一、目标要求

1.理解掌握分式的四则混合运算的顺序。

2.能正确熟练地进行分式的加、减、乘、除混合运算。

二、重点难点

重点:分式的加、减、乘、除混合运算的顺序。

难点:分式的加、减、乘、除混合运算。

分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。

三、解题方法指导

【例1】计算:(1 )[++(+)]·;

(2)(x-y-)(x+y-)÷[3(x+y)-]。

分析:分式的四则混合运算要注意运算顺序及括号的关系。

解:(1)原式=[++]·=[++]·=·==。

(2)原式=·÷=··=y-x。

【例2】计算:(1)(-+)·(a3-b3);

(2)(-)÷。

解:(1)原式=-+=-+ab

=a2+ab+b2-(a2-b2)-ab

=a2+ab+b2-a2+b2-ab=2b2。

(2)原式=[-]·=-=-====。

说明:分式的加、减、乘、除混合运算注意以下几点:

(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。

(3)注意括号的“添”或“去”、“变大”与“变小”。

(4)结果要化为最简分式。

四、激活思维训练

▲知识点:求分式的值

【例】已知x+=3,求下列各式的值:

北师大版八年级数学上册实数的教案(篇2)

教学目标:

知识与技能目标:

1.掌握矩形的概念、性质和判别条件.

2.提高对矩形的性质和判别在实际生活中的应用能力.

过程与方法目标:

1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.

2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.

情感与态度目标:

1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.

教学重点:

矩形的性质和常用判别方法的理解和掌握.

教学难点:

矩形的性质和常用判别方法的综合应用.

教学方法:

分析启发法

教具准备:

像框,平行四边形框架教具,多媒体课件.

教学过程设计:

一.情境导入:

演示平行四边形活动框架,引入课题.

二.讲授新课:

1.归纳矩形的定义:

问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)

结论:有一个内角是直角的平行四边形是矩形.

八年级数学上册教案2.探究矩形的性质:

(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)

结论:矩形的四个角都是直角.

(2).探索矩形对角线的性质:

让学生进行如下操作后,思考以下问题:(幻灯片展示)

在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.

①.随着∠α的变化,两条对角线的长度分别是怎样变化的?

②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?

③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?

(学生操作,思考、交流、归纳.)

结论:矩形的两条对角线相等.

(3).议一议:(展示问题,引导学生讨论解决.)

①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.

②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?

(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)

矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.

例解:(性质的运用,渗透矩形对角线的“化归”功能.)

如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4

厘米.求BD与AD的长.

(引导学生分析、解答.)

探索矩形的判别条件:(由修理桌子引出)

(1).想一想:(学生讨论、交流、共同学习)

对角线相等的平行四边形是怎样的四边形?为什么?

结论:对角线相等的平行四边形是矩形.

(理由可由师生共同分析,然后用幻灯片展示完整过程.)

(2).归纳矩形的判别方法:(引导学生归纳)

有一个内角是直角的平行四边形是矩形.

对角线相等的平行四边形是矩形.

三.课堂练习:

(出示P98随堂练习题,学生思考、解答.)

四.新课小结:

通过本节课的学习,你有什么收获?

(师生共同从知识与思想方法两方面小结.)

五.作业设计:P99习题4.6第1、2、3题.

板书设计:

4.矩形

矩形的定义:

矩形的性质:

前面知识的小系统图示:

三.矩形的判别条件:

例1

课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

北师大版八年级数学上册实数的教案(篇3)

一、课堂导入

回顾平行四边的性质定理及定义

1.什么叫平行四边形?平行四边形有什么性质?

2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

二、新课讲解

平行四边形的判定:

(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:

∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

(平行四边形判定定理):

(一)两组对边分别相等的四边形是平行四边形。

设问:这个命题的前提和结论是什么?

已知:四边形ABCD中,AB=CD,BC=DA。

求证:四边ABCD是平行四边形。

分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

板书证明过程。

小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

北师大版八年级数学上册实数的教案(篇4)

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习:平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

北师大版八年级数学上册实数的教案(篇5)

一.教学目标:

1.了解方差的定义和计算公式。

2.理解方差概念的产生和形成的`过程。

3.会用方差计算公式来比较两组数据的波动大小。

二.重点、难点和难点的突破方法:

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式

3.难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三.例习题的意图分析:

1.教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2.教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四.课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看20_年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五.例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3.方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六.随堂练习:

1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数1 2 3 4 5

段巍13 14 13 12 13

金志强10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.段巍的成绩比金志强的成绩要稳定。

七.课后练习:

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

选择小兵参加比赛。

221381
领取福利

微信扫码领取福利

微信扫码分享