欢迎访问安卓范文网!

高二数学知识点小结

范文百科 分享 时间: 加入收藏 我要投稿 点赞

  高二数学的知识点不少,同学们要懂得总结,以下是小编给大家带来的几篇高二数学知识点小结,供大家参考借鉴。

  高二数学知识点小结

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

  (3)棱台:

  几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

  俯视图(从上向下)

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;

  原来与y轴平行的线段仍然与y平行,长度为原来的一半.

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和.

  (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

  (3)柱体、锥体、台体的体积公式

  高中数学必修二知识点总结:直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

  当时,;当时,;当时,不存在.

  过两点的直线的斜率公式:

  注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

  (3)直线方程

  点斜式:直线斜率k,且过点

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

  斜截式:,直线斜率为k,直线在y轴上的截距为b

  两点式:()直线两点,

  截矩式:

  其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

  一般式:(A,B不全为0)

  注意:各式的适用范围特殊的方程如:

  (4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

  (5)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)垂直直线系

  垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

  (三)过定点的直线系

  ()斜率为k的直线系:,直线过定点;

  ()过两条直线,的交点的直线系方程为

  (为参数),其中直线不在直线系中.

  (6)两直线平行与垂直

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

  (7)两条直线的交点

  相交

  交点坐标即方程组的一组解.

  方程组无解;方程组有无数解与重合

  (8)两点间距离公式:设是平面直角坐标系中的两个点

  (9)点到直线距离公式:一点到直线的距离

  (10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解.

  高二数学知识点总结

  排列组合公式/排列组合计算公式

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法."排列"

  把5本书分给3个人,有几种分法"组合"

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  2008-07-0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1

  从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  举例:

  Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

  A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

  上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

  Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

  A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

  上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1

  排列、组合的概念和公式典型例题分析

  例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同同方法?

  解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

  (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.

  点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

  解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

  ∴符合题意的不同排法共有9种.

  点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

  例3判断下列问题是排列问题还是组合问题?并计算出结果.

  (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

  (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

  分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

  (1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

  (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.

  (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

  (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

  例4证明.

  证明左式

  右式.

  ∴等式成立.

  点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.

  例5化简.

  解法一原式

  解法二原式

  点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.

  例6解方程:(1);(2).

  解(1)原方程

  解得.

  (2)原方程可变为

  ∵,,

  ∴原方程可化为.

  即,解得

  第六章排列组合、二项式定理

  一、考纲要求

  1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.

  2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.

  3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.

  二、知识结构

  三、知识点、能力点提示

  (一)加法原理乘法原理

  说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.

知识相关文章:

1.生活常识

2.护肤知识小常识大全

3.英语知识

4.常识科普知识大全

5.日常健康知识

221381
领取福利

微信扫码领取福利

微信扫码分享