欢迎访问安卓范文网!

人教版初一数学下册知识点

范文百科 分享 时间: 加入收藏 我要投稿 点赞

人教版初一数学下册知识点梳理

上学的时候,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。为了帮助大家更高效的学习,下面是小编帮大家整理的人教版初一数学下册知识点,欢迎大家借鉴与参考,希望对大家有所帮助。

人教版初一数学下册知识点

人教版初一数学下册知识点

第一章 有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的.积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

人教版初一数学下册知识点梳理

一、同底数幂的乘法

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

二、幂的乘方与积的乘方

三、同底数幂的除法

(1)运用法则的前提是底数相同,只有底数相同,才能用此法则

(2)底数可以是具体的数,也可以是单项式或多项式

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

四、整式的乘法

1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

五、平方差公式

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

公式运用

可用于某些分母含有根号的分式:

1/(3-4倍根号2)化简:

六、完全平方公式

完全平方公式中常见错误有:

①漏下了一次项

②混淆公式

③运算结果中符号错误

④变式应用难于掌握。

七、整式的除法

1、单项式的除法法则

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。

初一数学下册知识点归纳

1.单项式

对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.

2.系数

单项式中的数字因数叫做这个单项式的系数.

3.单项式的次数

一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4.多项式

几个单项式的和叫做多项式.

5.多项式的项

在多项式中,每个单项式叫做多项式的项.

沪教版七年级数学知识点总结

-6是常数项.

6.常数项

多项式中,不含字母的项叫做常数项.

7.多项式的次数

多项式里,次数最高的项的次数,就是这个多项式的次数.

沪教版七年级数学知识点总结

8.降幂排列

把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.

9.升幂排列

把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.

沪教版七年级数学知识点总结

10.整式

单项式和多项式统称整式。

11.同类项

所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.

12.合并同类项

把多项式中的同类项合并成一项,叫做合并同类项.

合并同类项的法则是:

同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.

13.去括号法则

括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;

括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.

例:a+(b-2c)-(e-2d)=a+b-2c-e+2d

14.添括号法则

添括号后,括号前面是“+”号,括到括号里的各项都不变符号;

添括号后,括号前面是“-”号,括到括号里的各项都改变符号.

例:m+2x-y+z-5=m+(2x-y)-(-z+5)

15.整式的加减

整式加减的一般步骤:

1.如果遇到括号,按去括号法则先去括号;

2.合并同类项.

16.代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.

初一数学复习方法

一、注重预习,指导自学。

我个人认为,预习应该来说在初中阶段还是占有比较重要的地位的,而在小学阶段一般不那么重视,因此,到了初一大多数学生不会预习,即使预习了,也只是将课文从头到尾读一遍。在指导学生预习时应要求学生做到:一粗读,首先大致浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,多问些“为什么”,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。课堂上带着自己的问题听老师讲课,这样可以有目的的学习,提高课堂的有效时间。

二、认真听讲,会记笔记

课堂听讲很重要,认真听课可以事半功倍。由于课前进行了充分复习,对本节课还有不理解的地方,那么在老师的讲课过程中,看老师是如何讲解这个知识点的,对比一下自己在预习过程自己存在的障碍。

对于自己已经理解的知识点也要认真听课,加深记忆,看老师有什么独到之处,对老师强调的地方更应该引起自己的注意。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”

代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在作笔记时注意:记笔记服从听讲,要掌握记录时机;记要点、记疑问、记解题思路和方法;记小结、记课后思考题。记笔记是为了更好地总结和复习,切忌在课堂上一味抄写老师的板书。

三、先复习后做作业

首先应树立正确的作业观,不要为完成作业而完成作业,作业是为了学生更好地掌握知识,让老师了解学生存在的问题。而许多同学做作业时,通常是拿起题就做,一旦遇到困难了,才又回过头来翻书、查笔记,这是一种不良的习惯。做作业的第一步应是先复习有关的知识。

数学的学习方法

1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

221381
领取福利

微信扫码领取福利

微信扫码分享