欢迎访问安卓范文网!

初二上册数学知识点总结

范文百科 分享 时间: 加入收藏 我要投稿 点赞

初二上册数学必考知识点总结

我们在学习数学的过程中能锻炼自己观察事物的能力,分析判断力及创新能力,在以后的生活中,这些能力可以帮助我们把人生道路走得更好,使我们终生受益。一起来看看初二上册数学知识点总结,欢迎查阅!

初二上册数学知识点总结

初二上册数学知识点总结

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48 定理 四边形的内角和等于360°

49 四边形的外角和等于360°

50 多边形内角和定理 n边形的内角的和等于(n-2)×180°

51 推论 任意多边的外角和等于360°

52 平行四边形性质定理1 平行四边形的对角相等

53 平行四边形性质定理2 平行四边形的对边相等

54 推论 夹在两条平行线间的平行线段相等

55 平行四边形性质定理3 平行四边形的对角线互相平分

56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

初二上册数学必考知识点总结

实数的概念

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

实数有什么范围

在实数范围内,是指对于全体实数都成立,实数包括有理数和无理数,也可以分为正实数,0和负实数,不只是大于等于0,还包括负实数。

整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。

而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数。

所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。

实数的性质

1.基本运算:

实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。

实数加、减、乘、除(除数不为零)、平方后结果还是实数。

任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

有理数范围内的运算律、运算法则在实数范围内仍适用:

交换律:a+b=b+a,ab=ba

结合律:(a+b)+c=a+(b+c)

分配律:a(b+c)=ab+ac

2.实数的相反数:

实数的相反数的意义和有理数的相反数的意义相同。

实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。

实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

3.实数的绝对值:

实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;

一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是:|a|

①a为正数时,|a|=a(不变)

②a为0时,|a|=0

③a为负数时,|a|=a(为a的相反数)

(任何数的绝对值都大于或等于0,因为距离没有负的。)

4实数的倒数:

实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a(a≠0)

初中数学分式的运算知识点

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”。



初二上学期最新数学知识点复习

我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的`每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportionalfunction),其中k叫做比例系数。

形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linearfunction)。正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

初二数学上册知识点

逆定理的内容:

如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:

(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

2、利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

(1)确定最大边;

(2)算出最大边的平方与另两边的平方和;

(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

初二上册数学知识点归纳

平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算。

②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。

221381
领取福利

微信扫码领取福利

微信扫码分享