初三下册数学知识点整理
同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,小编整理了这篇初三下册数学知识点,希望可以帮助到大家!
初三下册数学知识点
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。
几个单项式的和,叫做多项式。
说明:
①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如=x,=│x│等。
4.系数与指数
区别与联系:
①从位置上看;
②从表示的意义上看;
5.同类项及其合并
条件:
①字母相同;
②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的`代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:
①从外形上判断;
②区别:是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根([a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:
①被开方数的因数是整数,因式是整式;
②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴(—幂,乘方运算)。
①a>0时,>0;
②a<0时,>0(n是偶数),<0(n是奇数)。
⑵零指数:=1(a≠0)。
负整指数:=1/(a≠0,p是正整数)。
初三下册数学知识点整理
一、锐角三角函数
正弦等于对边比斜边
余弦等于邻边比斜边
正切等于对边比邻边
余切等于邻边比对边
正割等于斜边比邻边
二、三角函数的计算
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.
泰勒展开式(幂级数展开法)
f(x)=f(a)+f(a)/1!-(x-a)+f(a)/2!-(x-a)2+...f(n)(a)/n!-(x-a)n+...
三、解直角三角形
1.直角三角形两个锐角互余。
2.直角三角形的'三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方
四、利用三角函数测高
1、解直角三角形的应用
(1)通过解直角三角形能解决实际问题中的很多有关测量问.
如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
(2)解直角三角形的一般过程是:
①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
初三数学下册知识点复习
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina(1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根号3
tan45=1
tan60=1.732050808 根号3
tan90=无
cot0=无
cot30=1.732050808 根号3
cot45=1
cot60=0.577350269 三分之根号3
cot90=0
初三数学下册知识点
在直角三角形中
sin@代表对边比斜边
cos@代表邻边比斜边
tan@代表对边比邻边
cot@代表邻边比对边
同角三角函数的基本关系式
倒数关系: 商的关系: 平方关系:
tan cot=1
sin csc=1
cos sec=1 sin/cos=tan=sec/csc
cos/sin=cot=csc/sec sin2+cos2=1
1+tan2=sec2
1+cot2=csc2
诱导公式
sin(-)=-sin
cos(-)=cos tan(-)=-tan
cot(-)=-cot
sin(/2-)=cos
cos(/2-)=sin
tan(/2-)=cot
cot(/2-)=tan
sin(/2+)=cos
cos(/2+)=-sin
tan(/2+)=-cot
cot(/2+)=-tan
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
sin(3/2-)=-cos
cos(3/2-)=-sin
tan(3/2-)=cot
cot(3/2-)=tan
sin(3/2+)=-cos
cos(3/2+)=sin
tan(3/2+)=-cot
cot(3/2+)=-tan
sin(2)=-sin
cos(2)=cos
tan(2)=-tan
cot(2)=-cot
sin(2k)=sin
cos(2k)=cos
tan(2k)=tan
cot(2k)=cot
(其中kZ)
两角和与差的三角函数公式 万能公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan+tan
tan(+)=------
1-tan tan
tan-tan
tan(-)=------
1+tan tan
2tan(/2)
sin=------
1+tan2(/2)
1-tan2(/2)
cos=------
1+tan2(/2)
2tan(/2)
tan=------
1-tan2(/2)
半角的'正弦、余弦和正切公式 三角函数的降幂公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2=2sincos
cos2=cos2-sin2=2cos2-1=1-2sin2
2tan
tan2=-----
1-tan2
sin3=3sin-4sin3
cos3=4cos3-3cos
3tan-tan3
tan3=------
1-3tan2
三角函数的和差化积公式 三角函数的积化和差公式
+ -
sin+sin=2sin---cos---
2 2
+ -
sin-sin=2cos---sin---
2 2
+ -
cos+cos=2cos---cos---
2 2
+ -
cos-cos=-2sin---sin---
2 2 1
sin cos=-[sin(+)+sin(-)]
2
1
cos sin=-[sin(+)-sin(-)]
2
1
cos cos=-[cos(+)+cos(-)]
2
1
sin sin=- -[cos(+)-cos(-)]
2
化asin bcos为一个角的一个三角函数的形式(辅助角的三角函数的公式)
初三下学期数学知识点归纳
知识点一、平面直角坐标系
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
2、坐标轴上的点的特征
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
4、和坐标轴平行的直线上点的'坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
初三下册数学知识点
上一篇:初三数学下册知识点总结
下一篇:返回列表