欢迎访问安卓范文网!

初二数学上册知识点总结最新

范文百科 分享 时间: 加入收藏 我要投稿 点赞

初二数学上册知识点总结最新大全

初二数学上册知识点总结最新有哪些你知道吗?在学习数学的过程中,我们可以获得数学知识,并用所学知识解题及解决一些生活实际问题。一起来看看初二数学上册知识点总结最新,欢迎查阅!

初二数学上册知识点总结最新

初二数学上册知识点总结

一次函数

我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

数据的描述

我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

条形图:描述各组数据的个数。

复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

扇形图:描述各组频数的大小在总数中所占的百分比。

折线图:描述数据的变化趋势。

直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。

在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。

求出各个小组两个端点的平均数,这些平均数称为组中值。

第十三章 全等三角形

能够完全重合的两个图形叫做全等形(congruent figures)。

能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)

两边和它们的夹角对应相等的两个三角形全等。(SAS)

两角和它们的夹边对应相等的两个三角形全等。(ASA)

两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

角平分线的性质:角平分线上的点到角的两边的距离相等。

到角两边的距离相等的点在角的平分线上。

轴对称

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

线段垂直平分线上的点与这条线段两个端点的距离相等。

由一个平面图形得到它的轴对称图形叫做轴对称变换。

等腰三角形的性质:

等腰三角形的两个底角相等。(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

有一个角是60°的等腰三角形是等边三角形。

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

整式

式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。

几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constantterm)。

多项式里次数的项的次数,就是这个多项式的次数。

单项式和多项式统称整式(integral expression_r)。

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。

同底数幂相乘,底数不变,指数相加。

幂的乘方,底数不变,指数相乘

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(x+p)(x+q)=x^2+(p+q)x+pq

平方差公式:(a+b)(a-b)=a^2-b^2

完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

(a+b+c)^2=a^2+2a(b+c)+(b+c)^2

同底数幂相除,底数不变,指数相减。

任何不等于0的数的0次幂都等于1。

分式

如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。

分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方要把分子、分母分别乘方。

a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

反比例函数

形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。

反比例函数的图像属于双曲线(hyperbola)。

当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

第十八章 勾股定理

勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2

勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

经过证明被确认正确的命题叫做定理(theorem)。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

章 四边形

有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定:

1.两组对边分别相等的四边形是平行四边形;

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1.一组邻边相等的平行四边形是菱形(rhombus)。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

线段的重心就是线段的中点。

平行四边形的重心是它的两条对角线的交点。

三角形的三条中线交于疑点,这一点就是三角形的重心。

宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。

数据的分析

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数(mode)。

一组数据中的数据与最小数据的差叫做这组数据的极差(range)。

方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告

初二数学上册知识点最新

1、 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

2、 定理1 关于某条直线对称的两个图形是全等形

3 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

4、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

5、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

6、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

7、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

8、定理 四边形的内角和等于360

9、四边形的外角和等于360

10、多边形内角和定理 n边形的内角的和等于(n-2)180

初二数学上册知识点

鸡兔问题:已知鸡兔的总头数和总腿数。求鸡和兔各多少只的一类应用题。通常称为鸡兔问题又称鸡兔同笼问题

解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是鸡或全是兔,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数

兔子只数=(总腿数-2×总头数)÷2

如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×总头数-总腿数)÷2

兔的头数=总头数-鸡的只数

例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?

兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)

鸡的只数 50-35=15 (只)


初二数学上册知识点总结最新相关文章:

★ 初二上册数学知识点人教版总结归纳

★ 最新初中一年级数学上册知识点总结

★ 人教版八年级上册数学知识点考试试卷及答案参考

★ 初二上册数学期中知识考点试题及答案参考

★ 最新八年级上册数学试卷与答案参考示例

★ 初二人教版数学上册期末试题含答案参考

★ 八年级上册数学复习题及答案参考总结

★ 初中趣味数学教案设计

★ 初中生学习心得方法与总结

★ 北师大版八年级下册数学知识点总结整理

221381
领取福利

微信扫码领取福利

微信扫码分享