欢迎访问安卓范文网!

必修五数学二单元知识点

范文百科 分享 时间: 加入收藏 我要投稿 点赞

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。下面是小编整理的必修五数学二单元知识点,仅供参考希望能够帮助到大家。

必修五数学二单元知识点

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x≠kπ+π/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若f(x)为增(减)函数,则-f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

近似数的意思

一个数与准确数相近,这一个数称之为近似数。准确数即这个数的最原始数据,没有经过约分、化简、或者四舍五入等任何运算之前的表达方法。近似数即经过四舍五入、进一法或者去尾法等方法得到的一个与原始数据相差不大的一个数。

e在数学中代表什么

小写e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。e=2.71828182……是微积分中的两个常用极限之一。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

e的起源

在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。欧拉也听说了这一常数,所以在27岁时,用发表论文的方式将e“保送”到微积分。

已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。

用e表示的确实原因不明,但可能因为e是“指数”一字的首字母。另一看法则称a,b,c和d有其他经常用途,e则是第一个可用字母。还有一种可能是,字母“e”是指欧拉的名字“Euler”的首字母。

以e为底的指数函数的重要方面在于它的函数与其导数相等。e是无理数和超越数(见林德曼-魏尔斯特拉斯定理)。这是第一个获证的超越数,而非故意构造的(比较刘维尔数);由夏尔·埃尔米特于1873年证明。

必修五数学二单元知识点相关文章:

★ 高二数学必修五知识点总结归纳5篇

★ 高二数学必修五知识点归纳大全5篇

★ 高二数学必修五知识点总结归纳五篇分享

★ 高二数学知识点重点梳理归纳5篇

★ 2020高二数学必修五重点知识点精选归纳5篇分享

★ 精选高二数学必修五知识点归纳三篇

★ 高二会考数学必考知识点总结【五篇】

★ 高二数学必修五知识点精选总结5篇分享

★ 高中数学笔记整理

★ 高中数学知识点精选难点

221381
领取福利

微信扫码领取福利

微信扫码分享