欢迎访问安卓范文网!

必修二北师大版数学知识点

范文百科 分享 时间: 加入收藏 我要投稿 点赞

数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。下面是小编整理的必修二北师大版数学知识点,仅供参考希望能够帮助到大家。

必修二北师大版数学知识

1.函数的奇偶性。

(1)若f(x)是偶函数,那么f(x)=f(-x)。

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

2.复合函数的有关问题。

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定。

3.函数图像(或方程曲线的对称性)。

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。

4.函数的周期性。

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。

5.判断对应是否为映射时,抓住两点。

(1)A中元素必须都有象且。

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

7.对于反函数,应掌握以下一些结论。

(1)定义域上的单调函数必有反函数。

(2)奇函数的反函数也是奇函数。

(3)定义域为非单元素集的偶函数不存在反函数。

(4)周期函数不存在反函数。

(5)互为反函数的两个函数具有相同的单调性。

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

8.处理二次函数的问题勿忘数形结合。

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。

9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。

10.恒成立问题的处理方法。

(1)分离参数法。

(2)转化为一元二次方程的根的分布列不等式(组)求解。

数学柱、锥、台、球的结构特征知识点

1.棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2.棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3.棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点。

4.圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5.圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6.圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成。

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7.球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高中学数学的技巧

多做习题,养成良好的解题习惯

要想学好数学,多做题是不可避免的。当然,多做题并不等于搞题海战术。做的题目要有代表性,不能胡子眉毛一把抓,碰到哪道题就做哪道题。有些题适合我们做,而有些题却超出了我们的能力范围,做这些题目只能是浪费我们宝贵的时间,不会达到任何效果。做的题要难易适中,通过做些有代表的题目,要力争能举一反三。数学是一门逻辑性很强的学科,需要缜密的思维,解题要有条理,在做题的过程中学会熟练运用正确的解题方法,掌握一些基本题型的解题规律。只有平时大量的训练,见多了、做多了,自然就熟能生巧,考试的时候就会应付自如,不至于乱了阵脚。

.调整好心态,正确对待平时的考试

大家都知道,数学是个逻辑性极强的学科,要求有清醒的头脑,数学运算过程中的每个解题步骤都很重要,漏掉了哪个步骤都是不行的。因此,在做数学题的时候,保持一个平静的心态是很重要。这就要求我们平时要学会善于把握自己的情绪,要能及时地调整好自己的心态,戒骄戒躁,千万不能一遇到解不出来的题目就焦躁不安。焦躁是学习数学的大忌。

必修二北师大版数学知识点相关文章:

★ 高中数学必修二知识点总结

★ 人教版高一数学知识点精选归纳5篇分享

★ 二年级下册数学教案北师大版模板

★ 三年级下册人教版数学知识点总结

★ 北师大版三年级下册数学教案模板

★ 最新北师大版五年级数学下册教案模板

★ 六年级数学教案北师大版模板

221381
领取福利

微信扫码领取福利

微信扫码分享