欢迎访问安卓范文网!

小学数学学习方法指导

范文百科 分享 时间: 加入收藏 我要投稿 点赞

小学数学学习方法指导(通用)

在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点。下面给大家分享一些关于小学数学学习方法指导(通用),希望能够对大家有所帮助。

小学数学学习方法指导

小学数学学习方法指导(精选篇1)

第一,怎么样学好数学

数学是必考之一,然而很多学生因为数学成绩不睬想而困扰,那么如何学好数学呢?现

给大家介绍几个方法,仅供参考。

1、教孩子有选择性和针对性的做题

2、注重家长的学习与交流

3、把弱项酿成强项的辅导法则

4、勇于参加奥数角逐

第二,奥数角逐与的关系。

一直以来,几乎所有家长和部分奥数老师都认为"只有学好奥数,才能取得好成绩",这种认识确实是有必然原因的。归纳起来,有以下四点:

1、杯赛为提供了试题

2、杯赛为提供了筹码

3、杯赛为提供了经验

4、杯赛增强了学生的自信心

第三,备考计划

作为应试升学,却缺乏应试升学应有的复习备考环节应有的复习备考环节!要想在中脱颖而出,六年级进行综合复习、真题模拟很重要!那么,六年级部分知识,如:

分数百分数、工程问题、比和比例……又该何时学习呢?备战,必需超前学习!具体如下:

1、四升五暑假模块化教学,学习必考知识点

2、五升五暑假完成全部知识点学习

3、六年级秋季九大专题,综合复习重要知识点

4、六年级寒假完成全部专题复习

5、六年级春季综合模拟,提升应试能力

第四,解决孩子经常粗心的方法

1、纠正孩子的书写习惯

2、减少孩子的依赖心理

3、让孩子养成认真仔细做作业的习惯

4、让孩子将做过的错题都记录下来

5、尽量不让孩子用橡皮和涂改带

6、用适当的目标激励孩子上进

第五,从知识方面充分做好择校备考工作

前面提到,择校题中,奥数很少(有的学校几乎补考奥数)。从题型上来说,主要有判断题,选择题,填空题,口算题,巧算题,几何题,应用题等,与平时的常规考题题型基本一致,从知识上来讲,以小学五六年级知识为主,会有很少量的超纲题(入勾股定理,解方程,字母表现数量),因此这种择校考试类型于中考,主要考查知识的深度与思维的灵活性,还有就是解题的速度与规范性。

小学数学学习方法指导(精选篇2)

第一,要理解概念。

数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。

第二,要掌握定理。

定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。

第三,在弄懂例题的基础上作适量的习题。

要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。

第四,理清脉络。

要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。

高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)

数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。

其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。

第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。

第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。

第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。

学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。

数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。

最后,预祝所有准备考研的学子都能榜上有名,考上理想的学校!

小学数学学习方法指导(精选篇3)

一、认清形势

现在六年级一些题目的难度是大学本科生甚至是研究生都无法接受的,只要他们以前没有接受过这样的训练。因此,我们要说,现在我们小孩学的奥数,的确很难,要说错,错在当今奥数学习的形势上--难度逐渐加大。

二、运用求助方式,多方寻求帮助

1、老师

我们不会的问题应该多多总结,无论是学校的任课老师,还是在外面学习,只要你有问题,我们就会认真的对你的问题进行详细的讲解和评价。在的授课重点上,我们强调奥数学习中的几个难点:行程问题,数论,分数应用,整除同余,平面几何中计算面积的问题。

2、家长

有些孩子的家长或许就是大学教授或者常年从事奥数的教学工作,孩子如果有问题,只要在家长力所能及的范围,都应当对孩子进行引导,最大限度的帮助他解决问题。

3、参考书

这是我们自己处理问题的方式,因为经典的问题往往是难度较大的问题,在如今奥数教材众多的市场上,我们总能找到一本适合自己用的参考书,这里面可能就有很多对你存在疑问的地方进行解答,而且有时还会有配套的练习,让你对这个问题进行深层次的掌握。

三、灵活处理,以退为进

就如之前所说的,如今的奥数学习难度有时超乎我们的想象,因此当多方求助无果后,是不是可以考虑放弃这道题目呢?即便是一道重点中学,甚至大学都不要求掌握的题目让我们靠别人来解决,难道真的能说明我们的奥数学习到了一个登峰造极的程度吗?我想,答案是否定的。换个思路,退而求其次,放弃它,我们或许能够在相同的时间里学到比这道题更加有用的知识。

总之,对奥数要求高的形势造就了如今奥数学习难度的加大,面对难题,首先不应怀疑自己,然后想法设法去解决问题,实在不行,退一步,我们或许能赢得奥数学习上的更大成就,一句话"奥数遇难题,千万莫着急"。

最后,预祝郑州的同学们都能取得优异的成绩,进入理想的中学!

小学数学学习方法指导(精选篇4)

高考试题重在考查对知识理解的准确性、深刻性,重在考查知识的综合灵活运用。它着眼于知识点新颖巧妙的组合,试题新而不偏,活而不过难;着眼于对数学思想方法、数学能力的考查。高考试题这种积极导向,决定了我们在教学中必须以数学思想指导知识、方法的运用,整体把握各部分知识的内在联系。只有加强数学思想方法的教学,优化学生的思维,全面提高数学能力,才能提高学生解题水平和应试能力。

高考复习有别于新知识的教学。它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的教学过程。

高考复习中数学思想方法教学的原则。

1、把知识的复习与思想方法的培养同时纳入教学目的原则。

各章应有明确的数学思想方法的教学目标,教案中要精心设计思想方法的教学过程。

2、寓思想方法的教学于完善学生的知识结构之中、于教学问题的解决之中的原则。

知识是思想方法的载体,数学问题是在数学思想的指导下,运用知识、方法"加工"的对象。皮之不存,毛将焉附?离开具体的数学活动的思想方法的教学是不可能的。

3、适当章节的强化训练与贯通复课全程的反复运用相结合的原则。

数学思想方法与数学知识的共存性、数学思想对数学活动的指导作用、被认知的思想方法只有在反复的运用中才能被真正掌握这一教学规律,都决定了成功的思想方法和教学只能是有意识的贯通复课全程的教学。特别是有广泛应用性的数学思想的教学更是如此。如数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。

在某种思想方法应用频繁的章节,应适当强化这种思想方法的训练。如在数学归纳法一节,应精心设计循序渐进的组题,在问题解决中提炼并明确总结联合运用不完全归纳法、数学归纳法解题这一思想方法,在学生能熟练运用的基础上,通过反复运用,才能形成自觉运用的意识。

小学数学学习方法指导(精选篇5)

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近__年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢?

在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。

所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。

221381
领取福利

微信扫码领取福利

微信扫码分享