最新平方根教案6篇
教师可以提出与课程内容相关的问题,以引起学生的兴趣并激发他们的思考。以下是小编为大家收集的平方根教案,欢迎阅读,希望大家能够喜欢。
2023平方根教案篇1
教学目标:
了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根
教学重点:
了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根
教学难点:
对 大小的估算及如何理解 是非负数以及被开方数 是非负数;正确区分算术平方根与平方根
过程
一、创设情景,导入新课
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?
这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)
二、合作交流,解读探究
讨论:
1、什么样的运算是平方运算?
2、你还记得1~20之间整数的平方吗?
自主探索:让学生独立看书,自学教材
总结:一般地,如果一个正数 的平方为 ,即 ,那么正数 叫做 的算术平方根,记为 ,读作根号 ,其中 叫做被开方数。 另外:0的算术平方根是0
探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形
把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为 ,则 ; 由算术平方根的意义,
即大正方形的边长为 。 讨论: 有多大呢?
思考:你能举些象 这样的无限不循环小数吗?
三、应用迁移,巩固提高
例1 求下列各数的算术平方根
⑴100
⑵ ⑶0.0001
⑷0
点拨:由一个数的算术平方根的定义出发来解决问题
思考:-4有算术平方根吗?
备选例题:要使代数式 有意义,则 的取值范围是( )
A. B. C. D.
四、总结反思,拓展升华
小结:
1、算术平方根的定义和性质;
2、用计算器求一个正数的.算术平方根
五、课堂跟踪反馈
1、 非负数 的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____
2、一个自然数的算术平方根为 ,那么与这个自然数相邻的下一个自然数的算术平方根是_______
3、 的算术平方根是_____, 的算术平方根____
4、 若 是49的算术平方根,则 =( )
A. 7 B. -7 C. 49 D.-49
5、 若 ,则 的算术平方根是( )
A. 49 B. 53 C.7 D .
6、 若 ,求 的值。
7、 若 是 的整数部分, 是 的小数部分,试确定 、 的值。
2023平方根教案篇2
学习目标:
1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性
2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;
学习重点:
理解算术平方根的概念
学习难点:
算术平方根具有双重非负性
学习过程:
一、学习准备
1、阅读课本第3页,由题意得出方程x= ,那么X= ,这种地砖一块的边长为 m
2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是 , 叫做4的算术平方根,记作 =2,2的平方根是“ ”, 叫做2的算术平方根,
3、(1)16的算术平方根的平方根是什么? 5的算术平方根是什么?
(2)0的算术平方根是什么? 0的算术平方根有几个?
(3)2、-5、-6有算术平方根吗?为什么?
4、按课本第4页例题1格式求下列各数的算术平方根:
(1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
(1) (2) (3)
2、利用计算器求下列各数的算术平方根
a2000020020.020.0002
通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律
3、在 中, 表示一个 数, 表示一个 数,算术平方根具有
练习:若a-5+ =0,则 的平方根是
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、判断下列说法是否正确:
①5是25的算术平方根;( )
②-6是 的.算术平方根; ( )
③ 0的算术平方根是0;( )
④ 0.01是0.1的算术平方根; ( )
⑤一个正方形的边长就是这个正方形的面积的算术平方根。 ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意义,哪些没有意义?
4、求下列各数的算术平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
2023平方根教案篇3
教学目标:
知识与技能
了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
过程与方法
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
情感、态度与价值观
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
教学重点
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的'平方根,并能用根号加以表示。
教学难点
会用平方根的概念求某些数的平方根,并能用根号加以表示。
教具准备
小黑板 科学计算器
教学过程
一、导入
1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。
2、板书:实数 1.1 平方根
二、新授
(一)探求新知
1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?
2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?( )1/3是无理数吗?
4、有理数和无理数统称为实数。
(二)知识归纳:
1、板书:1.1平方根
2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)
3、怎么算?每块地砖的面积是:10.8120=0.09平方米。
由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。
4、练习:
由于( )=400,因此面积为400平方厘米的正方形,它的边长为( )厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)
例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。
6、说一说:9,16,25,49的一个平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,还有别的数吗?
2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。
3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)
4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。
5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;把a的负平方根记作-。
6、0的平方根有且只有一个:0。0的平方根记作,即=0。
7、负数没有平方根。
8、求一个非负数的平方根,叫做开平方。
(四)巩固练习:
1、分别求下列各数的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)
2、分别求下列各数的算术平方根:100,16/25,0.49。(10,4/5,0.7)
三、小结与提高:
1、面积是196平方厘米的正方形,它的边长是多少厘米?
2、求算术平方根:81,25/144,0.16
2023平方根教案篇4
一.教学目标
1.会用计算器求数的平方根;
2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点
教学重点
用计算器求一个正数的平方根的程序
教学难点
准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求 的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求 的步骤如下:
小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求 的.值。(保留4个有效数字)
解:用计算器求 的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求 的值。
解:用计算器求 的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是: 显示612.65685≈612.7
练习:
求下列正数的算术平方根:
(1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;
(7) ; (8)101.38
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材 A组1、2、3
2023平方根教案篇5
教学目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数规定:0的算术平方根是0
也就是,在等式 =a (x0)中,规定x =
2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来
3、 想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、练习
P69练习 1、2
四、探究:(课本第69页)
怎样用两个面积为1的.小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.。
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
2023平方根教案篇6
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9;
2、()2 =0、25;
4、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的.平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:
1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0.2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P127练习1、2、3、4。
2023平方根教案
上一篇:2023八上数学教案
下一篇:返回列表