欢迎访问安卓范文网!

人教版六年级数学下册教案

七七范文 分享 时间: 加入收藏 我要投稿 点赞

人教版六年级数学下册教案(7篇)

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段等,可以应用于现实世界出现的任何问题,以下是小编准备的人教版六年级数学下册教案范文,欢迎借鉴参考。

人教版六年级数学下册教案精选篇1

教学目标:

1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。

2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。

3、结合欣赏和设计美丽的图案,感受图形世界的神奇。

重点难点:

1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。

2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。

教具学具:

三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带。

教学过程:

一、创设情境

1、欣赏生活中美丽的图案。

2、你看到的这些生活中的美丽图案,你有何感想?

3、揭示课题:今天,我们来制作美丽的图案。

[通过欣赏生活中美丽图案,激起学生对美丽图案的探究-,唤起学生制作图案的兴趣。]

二、观察、分析图案

1、课件2展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?

[通过再次欣赏花瓣图案,观察分析图案的构成,使学生进一步了解一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,体会图案设计的基本过程。]

2、小组内进行交流。

3、小组代表汇报研究结果。

4、你还有其他方法吗?

[通过小组合作探究、自由讨论,鼓励学生采用不同方法交流。注重培养学生想象和操作相结合,分析图形之间的关系。培养学生研究空间图形的能力、初步的空间观念,体验活动成功的喜悦。]

5、课件出示

笑笑能将线面的图1变成图2,你知道她是怎样做的吗?(同桌交流后回答)

6、教师小结

其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。

三、设计图案。

独立完成书37页练一练1题、2题。

四、课堂小结

1、同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?

2、教师激励学生,提出希望。

通过课堂小结,让学生感受到学习数学知识的愉悦,知道自己本节课学习了那些知识,还有什么不足,今后应该注意的问题。

五、课后作业

小组合作设计图案。

人教版六年级数学下册教案精选篇2

教学目标:

1. 通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。

2. 经历探索活动,了解反比例曲线图的特征。

教学重点:

探究长方形面积不变时,长与宽的关系。

教学难点:

发现表示反比例曲线图的特征。

教学过程:

一、旧知铺垫。

1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?

2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的方格圈起来,可以连成什么线?

3、说一说。

(1) 两个乘数的变化情况。

(2) 两个乘数成什么关系?

(3) 你有什么猜想?

二、探索新知。

用X、Y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。

x/cm 1 2 3 4 6 8 12 24

y/cm 24 12 8 6 4 3 2 1

1、说一说长与宽的变化情况。(小组交流)

2、这里哪个量一定?

3、面积一定时,长方形的长与宽有什么关系?(小组讨论)

板书:长宽=长方形面积(一定)

4、根据上面的数据,在方格纸上画出8个长方形。(每格代表 1 cm)

过程要求

(1) 出示方格纸,并标明X、Y轴上的数字。

(2) 教师边讲解,边画长方形。

(3) 学生接着画。(直接在课本上完成)

5、连接图中的点A,B,C,D

(1) 猜一猜:图中的点A,B,C,D在一条直线上吗?

(2) 师生一起连线,验证自己的猜想。

三、课堂小结

说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。

四、巩固练习

面包的总个数不变,每袋装的个数与袋数如下表。

每袋个数 2 3 4 6 8 12 24

袋 数 12 8 6 4 3 2 1

(1)每袋个数与袋数有什么关系?说明理由。

(2)把上面的数据制成图表。

人教版六年级数学下册教案精选篇3

【教学目标】

1.引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、探讨问题、应用知识的过程,自主总结出求倒数的方法。

2.通过合作活动培养学生与人合作,愿与人交流的习惯。

3.通过学生自主实施实践方案,培养学生自主学习和发展创新的意识。

【重点难点】

理解倒数的意义,掌握求倒数的方法。

【复习导入】

课件出示:

先计算,再观察。看看有什么规律。

①学生独立计算,并与同学讨论有什么规律。

②汇报交流,找出规律。

它们的规律是:

两个数的乘积规则:相乘的两个数的分子、分母正好颠倒了位置。

【新课讲授】

1.教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

(4)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置。)

2.教学求倒数的方法。

(1)写出的倒数: 求一个分数的倒数,只要把分子(数字3变换后移至所求分数分母位置处)、分母(数字5变换后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

3.教学特例,深入理解。

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数。)

【课堂作业】

(1)完成教材第29页第1题。

(2)完成教材第29页第2题。

①对,因为乘积是1的两个数互为倒数。

②错。因为乘积是1的两个数,互为倒数,不是三个数。

③错。0没有倒数。

④错。1的倒数是1。

(3)完成教材第29页第3题。

(4)完成教材第29页第4题。

(5)完成教材第29页第5题。

小红说得对。因为乘积是1的两个数互为倒数,×0.75=1,的倒数是0.75,因为0.75=。

【课堂小结】

你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

【课后作业】

完成《创优作业100分》本课时练习。

人教版六年级数学下册教案精选篇4

一、教学内容:

北师大版六年级数学下册第一单元《圆锥的体积》。

二、教学目标:

1、知识技能目标:

通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。

使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:

使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积的计算方法和推导过程。

四、教具准备:

1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

五、教学过程:

(一)创设情境,导入新课

投影出示圆锥形小麦堆。

师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?

这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。

【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。

(二)互动新授

1、提出问题。

教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?

根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?

进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?

学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。

2、实验探究。

(1)教师布置实验任务。

出示教材例2.

① 从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。

② 用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。

布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)

一号圆锥 二号圆锥 三号圆锥

次数

与圆柱是否等底、等高

(2)开展实验探究。

① 找出等底、等高的圆柱和圆锥形容器。

② 实验研究。

教师巡视指导。

学生一边实验,一边收集整理数据,完成实验记录单。

(3)分析数据,作出判断。

① 各组说说各种实验结果。

② 观察分析数据,你发现了什么?

(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)

③ 进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?

(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)

④ 是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)

(4)总结结论

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2: 圆柱的体积V等于和它等底等高的圆锥体积的3倍。

3、启发引导 推导公式

师:对于同学们得出的结论,你能否用数学公式来表示呢?

生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。

师:其他同学呢?你们认为这个同学的方法可以吗?

生:可以。

师:那我们就用1/3 sh表示圆锥的体积。

计算公式:V= 1/3 sh

师: (1)这里Sh表示什么?为什么要乘1/3?

(2)要求圆锥体积需要知道哪两个条件?

学生回答,师做总结

4、简单应用 尝试解答

例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

(学生独立列式计算全班交流)

(三)巩固练习,运用拓展

1、试一试

一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

2、练一练

计算下面各圆锥的体积:

3、实践性练习

师:请你们将做实验时装在圆柱容器里的水换成沙(或米)试一试,看结论是否一样。然后把它倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

4、开放性练习

一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

(四)整理归纳,回顾体验

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?你认为哪组表现最棒?

3、通过这节课的.学习,你有什么新的想法?还有什么问题?

【设计意图】通过组织学生对圆锥体积计算方法进行猜测、验证、交流,从而发现圆锥体积的计算方法。整个探究过程充分体现了学生的主体地位,调动了学生的学习积极性。在解决问题的过程中感受到数学知识的价值。

六、板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的1/3。

人教版六年级数学下册教案精选篇5

教学目标:

1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系,并能学以致用,解决大树、旗杆、高楼等物体有多高的问题。

2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

教学重点:

引导学生探索发现“同一地点,同时测量长度不同的竿,高度与影长的比值是相等的”教学难点:运用发现的规律解决“大树有多高”之类的实际问题。

教学准备:

课前测量数据,多媒体课件。

教学过程设计:

一、预习导学

1、师:同学们,下面我们来看段小视频。

2、师:同学们,物体的影子是怎么形成的呢?

3、师:所形成的影子的长短是由什么决定的呢?(班班通出示图片,学生观察、交流、汇报。)

4、师:那么物体的影子长度和物体的高度之间有着什么样的联系呢?你们想知道吗?这节课,我们就来一起研究一下。(板书课题)

二、新课探究

1、探究两根长度相同的竿的影长。

(出示视频)学生记录数据。

师:通过同学的测量,同时同一地点测量两根长度相同的竿,影长有什么关系?

(生分析数据,汇报)结论:同一时间,同一地点测量相同长度的竿,影长是相同的。

2、探究两根长度不同的竿的影长。

(出示视频)学生记录数据

师:通过测量,同时同一地点测量两根长度不同的竿,影长有什么关系?(生分析数据,汇报)

结论:同一时间,同一地点测量不同长度的竿,影长是不相同的。

3、探究竿长度与影长之间的关系。

(出示表格)1号2号3号4号竿长/cm

影长/cm竿长与影长的比值

要求:竹竿长与影长的比值保留两位小数。(小组合作完成)观察比较:比较每次求得的比值,你有什么发现?(思考,交流,汇报)结论:在同一地点,同时测量不同长度的竿,高度与影长的比值是相同的。

4、验证结论师:刚才发现的结论正确么?如果是正确的,老师课前还准备了5号竿,同学们运用所发现的结论,计算一下5号竿的竿长。

(出示视频,学生记录数据,计算)

三、当堂练习

1、在上海中心大厦测得其影长为158米,同时测得一根竹竿的长为180厘米,影长为45cm,那么长海中心大厦的高为多少米?

2、早晨在校园里测得一棵梧桐树的影长为37。5米,同时测得一根竹竿长2米,其影长为3米,这棵梧桐树高()米?

3、在学校的操场上,有一棵大树和一根旗杆,若此时大树的影长6m,旗杆高4m,影长5m,求大树的高度?

四、你知道么?约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?他苦苦思索着。有一天,当他看到金字塔在阳光下的影子时,他突然想到办法了。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。

五、课堂总结

人教版六年级数学下册教案精选篇6

教学目标:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:

圆柱切割组合模具、小黑板。

教学过程:

一、创设情境,生成问题

1、什么是体积?(物体所占空间的大小叫做物体的体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:V=Sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题

人教版六年级数学下册教案精选篇7

教学目标:

1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

课前准备:

教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。

教学设计:

一、创设情境导入

1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)

2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)

3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……

二、体验探究

1、认识圆柱

拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。

(1)学生观察,并用手摸表面、滚一滚。

(2)集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)

预设;

2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)

3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面相等)

4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)

5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)

那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)

(3)刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下:圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面),叫做它的(侧面)。圆柱有无数条高。

6、圆柱的侧面积。

(1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?

(2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

预设:长方形、正方形

(3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)

(4)下面请同学们认真观察,仔细的想一想

我们得到的这张长方形纸与茶叶桶的侧面有什么关系?

①同桌互相讨论一下。

②集体交流。(指名说,教师随即板书)

长方形的面积长宽

圆柱的侧面积底面周长高

(5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。

如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)

三、实践应用

1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。

2、29页1、2题

四、课堂小结。

通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)

五、拓展延伸

在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

221381
领取福利

微信扫码领取福利

微信扫码分享