2023因数和倍数教案精选5篇
我们衷心希望每个学生都能在这门课程中取得优异的成绩,并找到属于自己的学习方法和途径。下面是小编为大家整理的因数和倍数教案,如果大家喜欢可以分享给身边的朋友。
2023因数和倍数教案精选篇1
一、谈话导入,激发兴趣
1、回顾学过的数
2、明确学习主题
二、自主学习,探究新知
1、自主学习
自学指导:阅读课本P12和P13例1
(1)2x6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?
(2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?
(3)怎样找出18的全部因数?你是怎样想的?
怎样表示出18的因数?
要求:
1、独立学习
2、时间6分钟
3、全班交流
问题一:初建模型
在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。
问题二:深化模型
明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。
ab=c(a、b、c为非零自然数)
问题三:应用模型
①交流找一个数的因数的方法及表示方法。
②找30、36的因数。
3、议一议
(1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?
(2)通过找一个数的因数,你有什么发现?
三、检测反馈,拓展运用
四、板书设计
因数和倍数
2x6=12
2和6是12的因数。
12是2和6的倍数。
3x4=12
ab=c(a、b、c为非零自然数)
a和b是c的因数,c是a和b的倍数。
2023因数和倍数教案精选篇2
教学目标:
1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。
3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。
教学重点:理解倍数和因数的意义。
教学难点:探索求一个数的倍数和因数的方法。
教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。
设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的.活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。
教学过程:
一、智力竞猜 引入新课
1、让学生进行智力竞猜春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)
2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍下三个人的关系。学生可能会说出韩有才.是爸爸,韩有才是儿子的语句,这时引导学生说出谁是谁的爸爸谁是准的儿子。
3、上述父子关系是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系倍数和因数。
设计说明:智力竞猜走学生喜欢的形式,因为每个学生都有争强好胜之心,竞猜有两个作用,一是激发学生的学习兴趣,二是以此引出相互依存的关系,为理解倍数和因数的相互依存关系作铺垫。
二、操作发现 理解概念
1、师:智慧从手指问流出,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。
2、请学生汇报不同的摆法,以及相应的乘除法算式。(乘法算式和除法算式分开写)再向学生说明:如果一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)
设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。
3、让学生一起看乘法算式43=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。
4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。
5、让学生仿照说出62=12和121=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。
6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0( )=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。
设计说明:倍数和因数是全新的概念,需要教师的传授、讲解,需要学生的适当记忆重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。
7、以43=12与123=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。
8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数
54=20 357=5 3+4=7
(1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。
(2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。
设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。
三、探索方法 发现特征
1、找一个数的因数。
(1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。
(2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的一对一对说出15的因数。
(3)用一对一对的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。
(4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。
设计说明:先安排学生找一个数的因数可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生一对一对的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的某些特征。
2、找一个数的倍数。
(1)让学生找3的倍数,比一比谁找得多。
(2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。
(3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。
四、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?
1、想想做做的第l题。学生表述后强调哪个是哪个的倍数(或因数)。
2、想想做做的第2题。学生填好后引导学生说一说:表中的应付元数其实都是什么?表格中为什么用省略号?
3、想想做做的第3题。学生填好后引导学生说一说:表格中所有数都是什么?这个表格中为什么没有省略号?
4、游戏找朋友。让学生拿出各自的学号卡片,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?
设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使学生感悟到其中蕴藏着求一个数倍数和因数的方法,以及倍数和因数的某些特征。第4题通过游戏活动进一步激发学生持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。
五、自我梳理 探索延伸
1、通过这节课的学习你有什么收获?向你的同伴介绍一下。
2、生活中许多现象与我们学习的倍数和因数的知识有关,课后同学们可以利用今天所学的知识探索一下1小时等于60分的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算。
设计说明:向同伴介绍自己的收获可以将课堂中学到的知识进行自我梳理,同时通过探索1小时等于60分的好处,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展学生的知识面,使学生认识到数学知识的应用价值。
2023因数和倍数教案精选篇3
学习内容:
人教版小学数学五年级下册第23、24页。
学习目标:
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
学习重点:
能理解质数、合数的意义,正确判断一个数是质数还是合数。
学习难点:
用恰当的方法找出100以内的质数;会给自然数分类。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:
(1)有没有最大的质数或合数?
(2)根据因数的个数,可把非零自然数分成哪几类?
我的想法________________________________
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的质数都是奇数?
(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?
(4)是不是所有的偶数都是合数?
6.组内交流。
2023因数和倍数教案精选篇4
因数和倍数
教学目标:
知识与技能、过程与方法:
1、从操作活动中理解因数和倍数的好处,会决定一个数是不是另一个数的因数或倍数。
情感态度与价值观:
2、培养学生抽象、概括的潜力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重、难点:
1、理解因数和倍数的含义。
2、学会求一个数的因数或倍数的方法。
教学准备:课件
教学过程设计:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一齐探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、探究新知
(一)学习因数和倍数的概念
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
4、师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
(二)、学习求一个的因数或倍数的方法。
A、找因数:
1、出示例1:18的因数有哪几个?
从12的因数能够看得出,一个数的因数还不止一个,那我们一齐找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎样找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎样找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写能够吗?为什么?(不能够,因为重复的因数只要写一个就能够了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的必须是,而最大的必须是()。
3、你还想找哪个数的因数?(18、5、42……)请你选取其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还能够用集合表示。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一向找到它的本身,找的过程中一对一对找,写的时候从小到大写。
B、找倍数:
1、我们一齐找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完
你是怎样找到这些倍数的(生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几最大的你能找到吗
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
改写成:3的倍数有:3,6,9,12,……
你是怎样找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数状况,除了用这种文字叙述的方法外,还能够用集合来表示
2的倍数3的倍数5的倍数
师:我们明白一个数的因数的个数是有限的,那么一个数的倍数个数是怎样样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一齐来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
板书设计:
因数与倍数
因数与倍数指的是数与数之间的关系。
一个数因数的个数是有限的,最小的因数是1最大的因数是它本身。
一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
教学反思:
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际状况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。透过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出30和36的因数,到达了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,贴合了学生的认知规律。
2023因数和倍数教案精选篇5
教学资料:人教版12—16页的相关资料。
教学目标。
1、让学生理解倍数和因数的好处,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1—100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、让学生初步意识到能够从一个新的'角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括潜力,学会有序地思考问题,体会数学资料的奇妙、搞笑,产生对数学的好奇心。
教学重点:让学生理解倍数和因数的好处。
教学难点:探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学过程:
一、操作空间,初步感知
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。汇报:1×12=12,2×6=12,3×4=12。
【评析】透过让学生动手操作、想象、表达等环节,既为新知探索带给材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数
(1)我们就以3×4=12这道乘法算式为例,数学上我们说12是3的倍数,12也是4的倍数,3和4时12的因数。这就是我们这天所要研究的因数和倍数。
师板书:因数和倍数
师:根据黑板上的另两道算式,自己试着说说谁是谁的倍数,谁是谁的因数?指名口答。
(2)追问:如果说12是倍数,2是因数,能够吗?为什么?
教师:看来,倍数和因数的关系是相互的,我们只能说某个数是某个数的倍数,某个数是某个数的因数,不能够直接说某数是倍数,某数是因数。而且为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
(3)拓展:出示72页想想做做第一题。同桌互练,指名口答。
(4)师:老师还写了一个算式,从这个算式里你能找到因数和倍数吗?24÷8=3看来,我们不仅仅能够根据乘法算式找因数和倍数,也能够根据除法算式找因数和倍数。
(5)试一试:从中选取两个数,用这天学的知识随便说两句话。
4682415
2、探索求一个数的倍数的方法
(1)师:刚才我们已经明白12是3的倍数,那还有哪些数也是3的倍数呢?请同学们自己找一找?同桌交流交流。
屏幕显示:3的倍数有哪些?指名学生回答。
(2)师:什么样的数是3的倍数?
明确:3的倍数是3与一个数相乘的积。如,3×1=(),3×2=(),3×3=(),括号里的数都是3的倍数。
教师:谁能按从小到大的顺序有条理地说出3的倍数?能把3的倍数全部说完吗?就应怎样表示?根据学生的口答,屏幕显示:3的倍数有3、6、9、12、15……。
(3)请你用同样的方法,找找2的倍数和5的倍数?
(4)提问:请同学们观察,刚才所找的2、3、5的倍数,你有什么发现?能够小组内讨论交流。
(5)、根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数;一个数倍数的个数是无限的。
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
3、探索求一个数的因数的方法
(1)师:透过刚才的动脑思考,你们已经能够有序地找出一个数的倍数了,你能找出36的所有因数吗?
出示要求:①可独立完成,也可同桌合作。②可借助刚才找出12的所有因数的方法。③写出36的所有因数。4想一想,怎样找才能保证既不重复,又不遗漏。
(2)学生尝试。搜集学生作业,交流各自找一个数因数的方法。方法1:想乘法算式36×1=36;方法2:想除法算式36÷1=36;方法3:想乘法口诀;
(在交流中学生很有可能不能说完整,而是透过互相补充得到36所有的因数)板书:36的因数有:1,2,3,4,6,9,12,18,36。
(3)怎样找才能不重复不遗漏?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找。
(4)试一试:你能找出15和16所有的因数吗?
(5)观察36、15和16的所有因数,你有什么发现吗?(小结出一个数最小的因数是1,最大的是本身)
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
全课总结
1、这天我们一齐认识了倍数和因数,阅读课本70页,你还能发现什么?
2、游戏:对号入座规则:老师出一个数,看你卡片上的数是否贴合下面的条件,贴合的请站起来并且举起你的卡片。
师:我是45,我要找我的因数。我是6,我要找我的倍数。我是8,我要找我的因数,同时我也要找我的倍数。坐着的同学,下面老师要出个什么数字,不管是倍数还是因数,你们都能全部站起来吗?我是1,我找我的倍数。学生站起后宣布下课。
教学反思:
本课教学设计重在让学生透过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:
一、留足空间,让探索有质量。
留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一、把让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现带给了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:透过观察36,15,16的因数和3,6的倍数,你发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。第三:让学生“选用4,6,8,24,1,5中的一些数字,用这天学习的知识说一句话”。不拘形式的说话空间,不仅仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。
二、适度引导,让探索有方向。
引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断构成、知识不断建构的过程。
2023因数和倍数教案
上一篇:2023二次函数教案
下一篇:返回列表