欢迎访问安卓范文网!

2022六年级数学教案上册8篇

安卓范文 分享 时间: 加入收藏 我要投稿 点赞

六年级是五年级和七年级之间的年级,也是六年制小学中最重要的一个年级[最后一个年级(五四学制的学校为初一年级)]。下面是小编给大家整理的2022六年级数学教案上册,仅供参考希望能够帮助到大家。

2022六年级数学教案上册篇1

一、教材分析

首先我对本节教材内容进行如下分析:

本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味

二、学情分析:

我跟班上来的,对我班学生也比较了解,我班有47名学生,人数比较多,对数学知识的学习两极分化比较严重,大部分学生对数学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。

三、教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

2022六年级数学教案上册篇2

一、教学内容

已知两个数的和(差)及这两个数的倍数关系,求这两个数。(教材第41~42页例6)

二、教学目标

1、掌握用方程解决“已知两个数的和(差)及这两个数的倍数关系,求这两个数”的实际问题。

2、学会从不同的角度分析题中的数量关系,体会解法的多样性。

3、在解决实际问题的过程中,体会转化的思想,提高分析问题和解决问题的能力。

三、重点难点

重点:用方程解决“已知两个数的和(差)及这两个数的倍数关系,求这两个数”的实际问题。

难点:确定单位“1”,理清题中的数量关系,利用题中的等量关系正确列出方程。

教学过程

一、复习引入

1、根据题意先写出数量关系式,再列出方程。(课件出示题目)

(1)一袋面粉的3/4重15千克。这袋面粉重多少千克?

(2)一辆汽车每小时行60千米,是火车速度的1/4。火车的速度是多少?

点名学生回答,集体订正。

2022六年级数学教案上册篇3

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:

圆周率意义的理解和圆周长公式的推导。

教学设想:

新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

教学具准备:

多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

教学过程:

一、创设情境,提出问题

1、创设情境。

这节课,老师要和同学一起探讨一个有趣的数学问题。

媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

2、迁移类推。

引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

(1)要求唐老鸭所跑的路程实际就是求什么?

(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

3、提出问题。

看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]

二、自主参与,探究新知。

1、实际感知圆的周长。

让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

2、明确圆周长的意义。

引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

(1)圆的周长是一条什么线?

(2)这条曲线的长就是什么的长?

(3)什么叫做圆的周长?

学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)

[设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]

2022六年级数学教案上册篇4

教学目标:

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。

3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。

教学重点:

比的意义

教学准备:

多媒体课件、三支红粉笔、五支白粉笔

教学流程:

一、创设情境,理解意义

1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在天安门广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!

出示出一面国旗:

2、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。

明确:同类量相比单位名称要相同。

二、总结全课,拓展延伸

1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?

强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。

2、通过今天的学习,你有什么收获?

3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0.618,比大约为2∶3。

介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!

生活中还有很多地方用到黄金分割:

T型台上选模特也要求模特的身长与腿长的比符合黄金分割。

理发师也将黄金分割运用到发型设计中去。

……

课后同学们还可以去调查。

2022六年级数学教案上册篇5

教学目标:

1、理解圆的周长的概念

2、通过实践操作体验圆周率得出的过程

3、会用圆周长计算公式解决实际问题

4、结合课堂开展爱国主义教育

教重难点:

体验圆周率的得出过程

教学准备:

PPT课件,尺子、绳子,每个同学准备直径是3厘米、5厘米、8厘米的圆一个

教学过程:

一、创设情境,导入新课

圣诞节到了,动画城里的小动物们要召开一次运动会。兔八哥和鸭小弟参加跑步比赛,场地如图,猜一猜谁跑得比较快

二、用心感悟,理解概念

a)要求兔八哥所跑的路线,实际上就是求这个正方形的什么?

要知道这个正方形的周长,只要量出它的什么就可以了?能说出你的依据吗?(突出:正方形的周长与它的边长有关)

b)要求鸭小弟所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。

c)你能用自己的话说说什么叫圆的周长吗?(围成圆的曲线的长叫做圆的周长)

d)指出你手上的圆的周长

三、动手操作,体验过程

1、动手操作,那我们能不能想个办法来求一求圆的周长呢?动手之前老师先来访问几个同学你们打算怎么去测量呢?(在尺子上滚动、用绳子绕)滚动的方法如果没有没有就课件演示一下

2、请同学们用自己喜欢的方法测量任意两个圆的周长并完成表格

圆的直径

圆的周长

周长是直径的几倍?

3、提出猜想

你觉得圆的周长与什么有关呢?引导学生观察手上三个圆,说说你的想法。

跟直径、半径有关。那你觉得有什么关系呢?

直径越长,圆的周长就越长

4、刚才我们说正方形的的周长是边长的4倍,那么圆的周长是否也和圆的直径(半径)成一定的倍数关系呢?

5、汇报展示

观察数据,你有什么发现得出结论:圆的周长总是它直径的3倍多一些。板书:3倍多一些。

6、认识圆周率

这个倍数呢是一个固定的数,叫做圆周率。用公式表示圆周率=圆周长圆直径。圆周率用字母表示,读做pai。在1500多年前数学家祖冲之计算出圆周率的值在3.14159263。1415927之间,比欧洲早1000多年是当时世界上算最精确的圆周率的值了。经过精密计算,知道是个无限不循环小数。我们通常取3.14

7、引导出圆周长计算公式:圆的周长=直径圆周率用字母表示C=d

四、运用所学,解决问题

1、计算下面圆的周长

两个圆先求出示一个知道直径的圆,利用公式完成练习

第二个只知道半径,抛出问题,这个只知道半径你会求吗?得出求圆周长的另一个公式:圆的周长=半径2圆周率字母公式为C=2r然后完成计算

2、判断题:

1)圆的直径越大,圆周率就越大()

2)圆周长是它直径的3。14倍()

3)半圆的周长就是它所在圆的周长的一半()

3、解决开始跑步的问题

4、计算我们人民币1元的外周长,不知道条件怎么办?先测量然后计算

5、拓展

五、温故知新,总结课堂

2022六年级数学教案上册篇6

一、教学内容

比的应用的练习课。(教材第55~56页练习十二第3~7题)

二、教学目标

1、复习巩固按比分配问题的解题方法。

2、进一步培养学生应用知识解决实际问题的能力。

三、重点难点

重难点:会灵活运用按比分配问题的解题方法解决实际问题。

教学过程

一、基础练习

1、师:比的意义和基本性质是什么?(点名学生回答)

2、教材第55页练习十二第5、6题。

(学生独立完成,集体订正)

3、师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

引导学生回顾按比分配的两种解题方法。

二、指导练习

1、教学教材第55页练习十二第3题。

(1)组织学生观察图画,理解题意,了解信息。

(2)组织学生小组讨论,如何解决问题。

教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

(3)交流后,学生独立完成,集体订正。

2022六年级数学教案上册篇7

一、教学内容

化简比。(教材第50~51页例1)

二、教学目标

1、能运用比的基本性质化简比。

2、理解求比值和化简比的区别。

3、理解知识间的内在联系,渗透类比思想。

三、重点难点

重点:掌握化简比的方法。

难点:理解化简比与求比值的区别。

教学过程

一、复习引入

1、把下面的分数化为最简分数。(课件出示题目)

4/86/3012/1814/56

点名学生回答,并说一说什么是最简分数。

2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)

3、师:比的基本性质是什么?

4、引出新课。

师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的整数比。这就是这节课我们要一起学习的内容。

二、学习新课

1、认识最简单的整数比。

师:谁知道什么样的比可以称作最简单的整数比?

引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。

教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。

指名学生举出几个最简单的整数比。

2022六年级数学教案上册篇8

教材说明

综合应用“合理存款”是在完成了第六单元“百分数”的教学之后安排的,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识,并综合运用这些相关知识解决实际问题。通过这个活动,一方面可以使学生更多地接触实际生活中的百分数,认识到数学应用的广泛性;另一方面可以促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。

“合理存款”活动共由以下四个部分组成。

1.明确问题。

本活动主要围绕:“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开的。该问题中蕴含着几个很关键的信息:本金、可存款年限以及资金用途。

2.收集信息。

明确问题后,需要收集与该问题相关的信息。教材中呈现了通过去银行咨询以及查阅相关规定的方式获得的信息:(1)人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率等。(2)教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。(3)国债也是免征利息所得税,有三年期和五年期的……

3.设计方案。

根据上述收集到的信息,让学生设计具体的储蓄存款方案。定期储蓄存款的方案可填在第111页第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

4.选择方案。

从上述各种可行的方案中选取收益,即化的方案进行合理存款,并计算出到期后总共的收入。

教学建议

1.这部分内容可用1课时进行教学。

2.本活动涉及的调查与收集信息工作,老师可要求学生在课前完成。学生可以通过网络、电话以及银行咨询等多种渠道获得人民币储蓄、教育储蓄以及国债的利率和相关规定。

3.课堂教学时,老师可结合要解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途。这可以促使学生整理信息时更有针对性,特别是为设计教育储蓄存款方案提供合理的理由。

4.在明确学生已经收集到必需的信息之后,可让学生以小组合作学习的方式共同设计方案。教材第一张表格中给定期储蓄存款方案预留了三行,实际上学生在具体设计时可能不仅仅只有三种,如一年期存6次,二年期存3次,三年期存2次,先存五年期再存一年期……多种方案。老师对学生设计的不同方案要恰当的给予鼓励,不能不加指导让学生盲目地停留在对定期储蓄存款方案的罗列中。

5.在对教育储蓄和国债方案的设计之前,建议老师先引导学生充分了解和明确收集来的关于教育储蓄和国债的相关信息与规定。例如:(1)2006年发行的凭证式一期国债,三年期利率为3.14%,五年期利率为3.49%。(2)一年期、三年期教育储蓄按开户日同期整存整取定期储蓄存款利率计息,六年期按五年期整存整取定期储蓄存款利率计息;教育储蓄储户凭存折和学校提供的正在接受非义务教育的学生身份证明(以下简称“证明”)一次支取本金和利息,每份“证明”只享受一次优惠。

6.教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,它们的收益会相对较高。但由于国债和教育储蓄对存期和提取具有一定地限制,所以为了实现本笔存款收益化,可能的方案主要有以下几种:(1)教育储蓄存六年。(2)先买三年期国债,到期后再买三年期国债。(3)先买三年期国债,到期后再存三年期教育储蓄。(4)先买五年期国债,到期后再存一年期教育储蓄。在连续存款的方案中,连续存款时仍然只存本金一万元,不包括已经获得的利息(具体见下表)。

1.教师请各组同学选派代表,交流本小组选择的收益的方案,并具体算出到期的收入。这里需要说明的是,本活动在设计方案时国债利率均以2006年发行的凭证式一期国债的年限和利率为准,教育储蓄也以当前的规定和利率为准。实际上,国债以及教育储蓄的利率在不同时期可能会有所调整,但无论利率如何变化,方案设计的思路是一致的。教学时老师可根据当时的情况进行具体的调整。

2.教师在与全班同学共同反馈结果后,还可让学生充分讨论,如果自己有钱,想怎样投资,理由是什么,培养学生的投资意识。


221381
领取福利

微信扫码领取福利

微信扫码分享