如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面。一起看看新人教版八年级数学下册二次根式教案!欢迎查阅!
新人教版八年级数学下册二次根式教案1
1.二次根式:式子 ( ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
(1)( )2= ( ≥0); (2)
5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
= • (a≥0,b≥0); (b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质
例1下列各式1) ,
其中是二次根式的是_________(填序号).
例2、求下列二次根式中字母的取值范围
(1) ;(2)
例3、 在根式1) ,最简二次根式是( )
A.1) 2) B.3) 4) C.1) 3) D.1) 4)
例4、已知:
例5、 (2009龙岩)已知数a,b,若 =b-a,则 ( )
A. a>b B. a2、二次根式的化简与计算
例1. 将 根号外的a移到根号内,得 ( )
A. ; B. - ; C. - ; D.
例2. 把(a-b)-1a-b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
,其中a= ,b= .
例5、如图,实数 、 在数轴上的位置,化简 :
4、比较数值
(1)、根式变形法
当 时,①如果 ,则 ;②如果 ,则 。
例1、比较 与 的大小。
(2)、平方法
当 时,①如果 ,则 ;②如果 ,则 。
例2、比较 与 的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。
例3、比较 与 的大小。
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。
例4、比较 与 的大小。
(5)、倒数法
例5、比较 与 的大小。
(6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较 与 的大小。
(7)、作差比较法
在对两数比较大小时,经常运用如下性质:
① ;②
例7、比较 与 的大小。
(8)、求商比较法
它运用如下性质:当a>0,b>0时,则:
① ; ②
例8、比较 与 的大小。
5、规律性问题
例1. 观察下列各式及其验证过程:
, 验证: ;
验证: .
(1)按照上述两个等式及其验证过程的基本思路,猜想 的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
新人教版八年级数学下册二次根式教案2
1.下列图像中可能是反比例函数y= 的图像的共有 ( )
2.在同一直角坐标系下,直线y=x+1与双曲线y= 的交点的个数为 ( )
A.0个 B.1个 C.2个 D.不能确定
3.反比例函数y=- 的图像是_______,该函数图像在第_______象限.
4.已知反比例函数y= 的图像经过点(1,-2),则这个函数的表达式是_______.
5.已知双曲线y= 经过点(-1,2),那么k的值等于_______.
6.在平面直角坐标系中,分别画出下列函数的图像:
(1)y= (2)y=-
7.反比例函数y= 的图像经过点(-2,3),则k的值为 ( )
A.6 B.-6 C. D.-
8.反比例函数y= 的图像大致是 ( )
9.如图,点P(-3,2)是反比例函数y= (k≠0)的图像上
一点,则反比例函数的解析式为 ( )
A.y=- B.y=-
C.y=- D.y=-
10.函数y=- 的图像上所有点的横坐标与纵坐标的乘积是_______.
11.已知点P为函数y= 图像上一点,且P到原点的距离为2,则符合条件的点P有__个
12.分别在坐标系中画出下列函数的图像:
(1)y= (2)y=-
13.反比例函数y= 的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?
14.设某一直角三角形的面积为18 cm2,两条直角边的长分别为x(cm),y(cm).
(1)写出y(cm)与x( cm)的函数关系式;
(2)画出该函数的图像;
(3)根据图像,求解:①当x=4 cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?
参考答案
1.B 2.C 3.双曲线 二、四 4.y=- 5.-3 6.略
7.C 8.C 9.D 10.-5 11.4 12.略 13.y=- 图像略 分布在二、四象限 14.(1)y= (2)略 (3)①y=9 ② x=6
新人教版八年级数学下册二次根式教案3
一、指导思想
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。我班优生稍少,学生非常活跃,有少数学生不求上进,思维不紧跟老师。有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
《义务教育教科书•数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(2011年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。
第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。
第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。
第18章“平行四边形”主要研究一般平行四边形的概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。
第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择方案为素材的课题学习。
第20章“数据的分析”主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
本学期全书共需约62课时,具体分配如下:
第十六章二次根式约9课时
第十七章勾股定理约9课时
第十八章平行四边形约15课时
第十九章一次函数约17课时
第二十章数据的分析约12课时
四、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写学后总结,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
8、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
9、培养学生学习数学的良好习惯。这些习惯包括①认真做作业的习惯包括作业前清理好桌面,作业后认真检查;②预习的习惯;③认真看批改后的作业并及时更正的习惯;④认真做好课前准备的习惯;⑤在书上作精要笔记的习惯;⑥妥善保管书籍资料和学习用品的习惯;⑦认真阅读数学教材的习惯。
新人教版八年级数学下册二次根式教案相关文章:
★ 初中数学教育叙事
★ 最新北师大版九年级数学上册教案模板
新人教版八年级数学下册二次根式教案
上一篇:一元二次方程优秀教案
下一篇:返回列表